

EMC Test Report

Report No.: RM180620D13B

Test Model: Calliope Mini

Received Date: Aug. 5, 2019

Test Date: Aug. 16 to 21, 2019

Issued Date: Aug. 22, 2019

Applicant: Calliope gGmbH

Address: Raumerstraße 11; 10437 Berlin

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. government

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Relea	se Control Record	4
1 (Certificate of Conformity	5
2 5	Summary of Test Results	6
2.1 2.2	Measurement Uncertainty	
3 (General Information	
3.1 3.2 3.3 3.4 3.5	Description of EUT Features of EUT Operating Modes of EUT and Determination of Worst Case Operating Mode Test Program Used and Operation Descriptions Primary Clock Frequencies of Internal Source	8 9 9
4 (Configuration and Connections with EUT	. 10
4.1 4.2	Connection Diagram of EUT and Peripheral Devices	
5 (Conducted Emission from the AC Mains Power Port	11
5.1 5.2 5.3 5.4	Limits Test Instruments Test Arrangement Test Results	11 12
6 F	Radiated Emission at Frequencies up to 1GHz	. 15
6.1 6.2 6.3 6.4	Limits Test Instruments Test Arrangement Test Results	15 16
7 F	Radiated Emission at Frequencies above 1GHz	. 19
7.1 7.2 7.3 7.4	Limits Test Instruments Test Arrangement Test Results	20 21
8 (General Immunity Requirements	. 24
8.1	Performance Criteria	
9 E	Electrostatic Discharge Immunity Test (ESD)	. 27
9.1 9.2 9.3 9.4	Test Specification	27 27
10 F	Radiated, Radio-frequency, Electromagnetic Field Immunity Test (RS)	. 30
10.1 10.2 10.3 10.4	Test Instruments	30 31
11 F	Pictures of Test Arrangements	. 33
11.1 11.2 11.3	Radiated Emission at Frequencies up to 1GHz	34

11.4 Electrostatic Discharge Immunity Test (ESD)	36
Appendix – Information of the Testing Laboratories	38

Report No.: RM180620D13B Reference No.: 190805D14

Release Control Record

Issue No.	Description	Date Issued
RM180620D13B	Original release.	Aug. 22, 2019

Report No.: RM180620D13B Reference No.: 190805D14 Page No. 4 / 38 Report Format Version: 6.1.5

1 Certificate of Conformity

Product: Calliope Mini

Brand: Calliope gGmbh

Test Model: Calliope Mini

Sample Status: Engineering Sample

Applicant: Calliope gGmbH

Test Date: Aug. 16 to 21, 2019

Standards: EN 301 489-1 V2.1.1 (2017-02)

EN 301 489-17 V3.1.1 (2017-02)

EN 55032:2015 +AC:2016, Class B

EN 61000-3-2:2014 (Not Applicable)

EN 61000-3-3:2013 (Not Applicable)

EN 61000-4-2:2009

EN 61000-4-3:2006 +A1:2008 +A2:2010

EN 61000-4-4:2012 (Not Applicable)

EN 61000-4-5:2014 +A1:2017 (Not Applicable)

EN 61000-4-6:2014 +AC:2015 (Not Applicable)

EN 61000-4-11:2004 +A1:2017 (Not Applicable)

Note: This test is not executed for Conducted emission of DC power input/output ports due to test was previously performed in Report no.: RM180620D13 issued on Oct. 4, 2018.

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :	Cha Chen	, Date:	Aug. 22, 2019

Celia Chen / Supervisor

Jim Hsiang / Associate Technical Manager

2 Summary of Test Results

EN 301 489-1 V2.1.1 (2017- Basic Standard	Phenomenon	Application	Result/Remarks	Verdict
EN 55032:2015 +AC:2016	Radiated emission 30-1000 MHz	Enclosure of ancillary equipment	Minimum passing Class B margin is -5.78 dB at 61.45 MHz	Pass
EN 33032.2013 +AC.2016	Radiated emission 1-6 GHz	measured on a stand alone basis	Minimum passing Class B margin is -17.28 dB at 2839.12 MHz	Pass
EN 55000 0045 + AQ 0040	Conducted emission 150 kHz - 30 MHz	DC power input/output ports (fixed)	Refer to Note 4 as below	N/A
EN 55032:2015 +AC:2016	Conducted emission 150 kHz - 30 MHz	DC power input ports (vehicular)	Test not applicable because port does not exist.	N/A
EN 55032:2015 +AC:2016	Conducted emission 150 kHz - 30 MHz	AC mains input/output ports	Minimum passing Class B margin is -17.56 dB at 0.82188 MHz	Pass
EN 61000-3-2:2014	Harmonic current emissions	AC mains input port	Test not applicable because port does not exist.	N/A
EN 61000-3-3:2013	Voltage fluctuations and flicker	AC mains input port	Test not applicable because port does not exist.	N/A
EN 55032:2015 +AC:2016	Conducted disturbance 150 kHz - 30 MHz	Wired network ports	Without telecom port of the EUT.	N/A

EN 301 489-1 V2.1.1 (2017-02) / EN 301 489-17 V3.1.1 (2017-02), Immunity						
Basic Standard	Phenomenon	Application	Result/Remarks	Verdict		
RF EN 61000-4-3:2006 Electromagnetic +A1:2008 +A2:2010 Field (80 MHz to 6000 MHz) (RS)		Enclosure	Performance Criterion A	Pass		
EN 61000-4-2:2009	Electrostatic Discharges (ESD)	Enclosure	Performance Criterion A	Pass		
EN 61000-4-4:2012	Fast Transients Common Mode (EFT)	Signal, Wired networks and control ports, DC and AC power ports	EUT's cable length is not greater than 3m and EUT consumes DC power.	N/A		
EN 61000-4-6:2014 +AC:2015	RF Common Mode 150 kHz to 80 MHz (CS)	Signal, Wired networks and control ports, DC and AC power ports	EUT's cable length is not greater than 3m and EUT consumes DC power.	N/A		
ISO 7637-2:2011	Transients and Surges	DC power input ports (Vehicular)	Test not applicable because not intend for vehicular use.	N/A		
EN 61000-4-11:2004 +A1:2017	Voltage Dips and Interruptions	AC mains power input ports	Test not applicable because port does not exist.	N/A		
EN 61000-4-5:2014 +A1:2017	Surges	AC mains power input ports, Signal and Wired network ports	Test not applicable because port does not exist.	N/A		

Note:

- 1. There is no deviation to the applied test methods and requirements covered by the scope of this report.
- 2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- 3. The above EN basic standards are applied with latest version if customer has no special requirement.
- 4. This test is not executed for Conducted emission of DC power input/output ports due to test was previously performed in Report no.: RM180620D13 issued on Oct. 4, 2018.
- 5. N/A: Not Applicable

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Expended Uncertainty (k=2) (±)	Maximum allowable uncertainty (±)
Conducted disturbance at mains port using AMN, 150kHz ~ 30MHz	2.79 dB	3.4 dB (<i>U</i> _{cispr})
Radiated disturbance, 30MHz ~ 1GHz	3.67 dB	6.3 dB (<i>U</i> _{cispr})
Radiated disturbance, 1GHz ~ 6GHz	4.85 dB	5.2 dB (<i>U</i> _{cispr})

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 Description of EUT

Calliope Mini	
Calliope gGmbh	
Calliope Mini	
Engineering Sample	
N/A	
3Vdc from Battery holder,	
5Vdc from USB interface	
Battery holder	
USB cable (0.15m)	

Note:

- 1. This report is issued as a supplementary report to BV CPS report no.: RM180620D13. The difference compared with original report is change the hardware a bit and add a memory chip on the PCB, therefore the EUT is re-tested in this report.
- 2. This test is not executed for Conducted emission of DC power input/output ports due to test was previously performed in Report no.: RM180620D13.
- 3. The EUT with Bluetooth technology.

3.2 Features of EUT

The tests reported herein were performed according to the method specified by Calliope gGmbH, for detailed feature description, please refer to the manufacturer's specifications or user's manual.

Report No.: RM180620D13B Page No. 8 / 38 Report Format Version: 6.1.5

3.3 Operating Modes of EUT and Determination of Worst Case Operating Mode

- 1. The EUT was tested with previous worst case (test condition: normal mode + BT Link+ power from adapter) for final test.
- 2. Test modes are presented in the report as below.

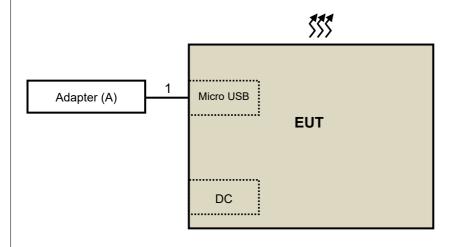
Mode	Test Condition	Input Power					
	Conducted emission test						
1	Normal mode + BT Link+ power from adapter	230Vac / 50Hz (Adapter)					
	Radiated emission test						
1	Normal mode + BT Link+ power from adapter	230Vac / 50Hz (Adapter)					
ESD test*							
1	Normal mode + BT Link+ power from adapter	230Vac / 50Hz (Adapter)					
*As client's	*As client's request, the EUT only tested "Indirect Discharge", the more reason and detail will be						
put in the User's Manual.							
RS test							
1	Normal mode + BT Link+ power from adapter	230Vac / 50Hz (Adapter)					

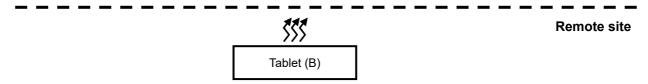
4. This test is not executed for Conducted emission of DC power input/output ports due to test was previously performed in Report no.: RM180620D13 issued on Oct. 4, 2018.

3.4 Test Program Used and Operation Descriptions

- a. Connect the adapter to EUT.
- b. Turned on the power of all equipment.
- c. Tablet (kept in a remote area) link EUT via Bluetooth transmission.
- d. Tablet (kept in a remote area) received messages from EUT.

3.5 Primary Clock Frequencies of Internal Source


The highest frequency generated or used within the EUT or on which the EUT operates or tunes is 2.5GHz, provided by Calliope gGmbH, for detailed internal source, please refer to the manufacturer's specifications.


Report No.: RM180620D13B Page No. 9 / 38 Report Format Version: 6.1.5

4 Configuration and Connections with EUT

4.1 Connection Diagram of EUT and Peripheral Devices

4.2 Configuration of Peripheral Devices and Cable Connections

Emission tests:

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	Adapter	Apple	A1385	N/A	N/A	Provided by Lab
B.	Tablet	ASUS	K00R(ME572CL)	N/A	N/A	Provided by Lab

Note:

- 1. All power cords of the above support units are non-shielded (1.8m).
- 2. Item B acted as communication partners to transfer data.

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB cable	1	0.15	Υ	0	Supplied by client

Immunity tests:

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	Adapter	Lenovo	ADL40WLG	N/A	N/A	Provided by Lab
B.	Tablet	ASUS	K00R(ME572CL)	N/A	N/A	Provided by Lab

Note:

- 1. All power cords of the above support units are non-shielded (1.8m).
- 2. Item B acted as communication partners to transfer data.

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB cable	1	0.15	Υ	0	Supplied by client

Report No.: RM180620D13B Page No. 10 / 38 Report Format Version: 6.1.5

5 Conducted Emission from the AC Mains Power Port

5.1 Limits

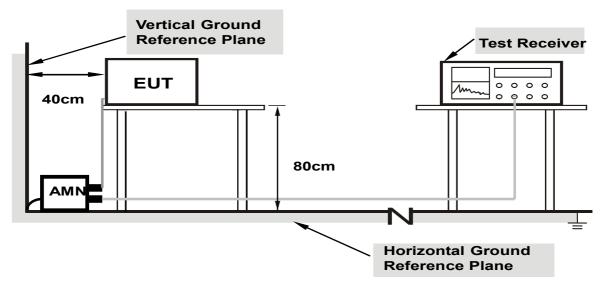
Frequency range (MHz)	Coupling device	Detector type / bandwidth	Class A limits (dBuV)
0.15 - 0.5		Quasi-peak / 9kHz	79
0.5 - 30.0	AMN	Quasi-peak / 9kHz	73
0.15 - 0.5		Average / OkHz	66
0.5 - 30.0		Average / 9kHz	60

Frequency range (MHz)	Coupling device	Detector type / bandwidth	Class B limits (dBuV)
0.15 - 0.5			66 - 56
0.5 - 5		Quasi-peak / 9kHz	56
5 - 30.0	AMN		60
0.15 - 0.5		Average / 9kHz	56 - 46
0.5 - 5			46
5 - 30.0			50

5.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
ROHDE & SCHWARZ TEST RECEIVER	ESCS 30	100290	Dec. 18, 2018	Dec. 17, 2019
ROHDE & SCHWARZ Artificial Mains Network (for EUT)	ENV216	101197	Jun. 5, 2019	Jun. 4, 2020
LISN With Adapter (for EUT)	101197	NA	Jun. 5, 2019	Jun. 4, 2020
ROHDE & SCHWARZ				
Artificial Mains Network (for peripherals)	ESH3-Z5	100218	Nov. 30, 2018	Nov. 29, 2019
SCHWARZBECK Artificial Mains Network (For EUT)	NNLK8129	8129229	May 14, 2019	May 13, 2020
SCHWARZBECK Artificial Mains Network (For EUT)	NNLK 8121	8121-808	Mar. 15, 2019	Mar. 14, 2020
Software	Cond_V7.3.7.4	NA	NA	NA
RF cable (JYEBAO) With 10dB PAD	5D-FB	Cable-C10.01	Feb. 13, 2019	Feb. 12, 2020
LYNICS Terminator (For ROHDE & SCHWARZ LISN)	0900510	E1-011484	May 13, 2019	May 12, 2020
ROHDE & SCHWARZ Artificial Mains Network (For TV EUT)	ENV216	101196	Apr. 16, 2019	Apr. 15, 2020
LISN With Adapter (for TV EUT)	101196	NA	Apr. 16, 2019	Apr. 15, 2020

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.


- 2. The test was performed in Shielded Room No. 10.
- 3. The VCCI Site Registration No. C-11852.
- 4. Tested Date: Aug. 16, 2019

5.3 Test Arrangement

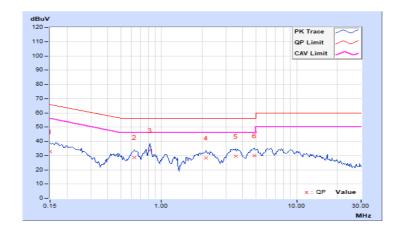
- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through an Artificial Mains Network (AMN). Other support units were connected to the power mains through another AMN. The two AMNs provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The test results of conducted emissions at mains ports are recorded of six worst margins for quasi-peak (mandatory) [and average (if necessary)] values against the limits at frequencies of interest unless the margin is 20 dB or greater.

Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

Note: 1. Support units were connected to second AMN.

- 2. The distance specified between EUT/AE and other metallic objects is ≥ 0.8 m in the measurement arrangement for table-top EUT.
- 3. Cable on the RGP must to be insulated.

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

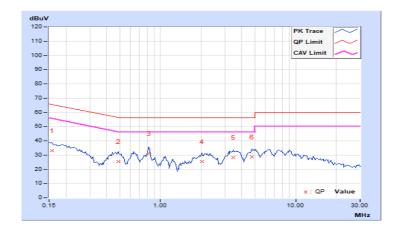

5.4 Test Results

Frequency Range	150kHz ~ 30MHz	Detector Function & Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	230Vac, 50Hz	Environmental Conditions	25℃, 75%RH, 993mbar
Tested by	Vincent Lin		
Test Mode	Mode 1		

	Phase Of Power : Line (L)									
No	· · · · · · · · · · · · · · · · · · ·		Reading Value (dBuV)			n Level uV)		nit uV)		rgin B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	9.66	22.99	2.69	32.65	12.35	66.00	56.00	-33.35	-43.65
2	0.63438	9.82	18.87	13.39	28.69	23.21	56.00	46.00	-27.31	-22.79
3	0.82188	9.87	23.72	18.57	33.59	28.44	56.00	46.00	-22.41	-17.56
4	2.13281	10.00	18.22	13.14	28.22	23.14	56.00	46.00	-27.78	-22.86
5	3.55078	10.06	19.29	14.19	29.35	24.25	56.00	46.00	-26.65	-21.75
6	4.86719	10.11	19.86	14.84	29.97	24.95	56.00	46.00	-26.03	-21.05

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



Frequency Range	150kHz ~ 30MHz	Detector Function & Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	230Vac, 50Hz	Environmental Conditions	25℃ , 75%RH, 993mbar
Tested by	Vincent Lin		
Test Mode	Mode 1		

	Phase Of Power : Neutral (N)									
No	Frequency Correction Reading Value Emission Leve (dBuV) (dBuV)		_			Limit (dBuV)		Margin (dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15781	9.71	23.44	1.60	33.15	11.31	65.58	55.58	-32.43	-44.27
2	0.48594	9.84	15.70	3.50	25.54	13.34	56.24	46.24	-30.70	-32.90
3	0.82188	9.91	21.08	15.12	30.99	25.03	56.00	46.00	-25.01	-20.97
4	2.02344	10.04	15.56	10.60	25.60	20.64	56.00	46.00	-30.40	-25.36
5	3.45703	10.11	18.09	13.47	28.20	23.58	56.00	46.00	-27.80	-22.42
6	4.77344	10.15	18.51	13.85	28.66	24.00	56.00	46.00	-27.34	-22.00

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

6 Radiated Emission at Frequencies up to 1GHz

6.1 Limits

For Class A Equipment

Frequency range (MHz)	Distance (m)	Limits (dBuV/m)
30 - 230	10	40
230 - 1000	10	47
30 - 230	2	50
230 - 1000	3	57

For Class B Equipment

Frequency range (MHz)	Distance (m)	Limits (dBuV/m)	
30 - 230	10	30	
230 - 1000	10	37	
30 - 230	2	40	
230 - 1000	3	47	

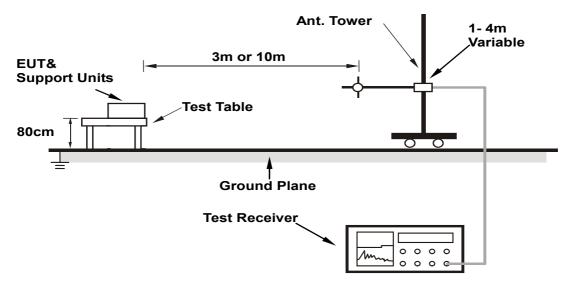
6.2 **Test Instruments**

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
EMCI Preamplifier	EMC9135	980326	Feb. 20, 2019	Feb. 19, 2020
EMCI Preamplifier	EMC9135	980327	Feb. 20, 2019	Feb. 19, 2020
Agilent Test Receiver	N9038A	MY55420137	Apr. 15, 2019	Apr. 14, 2020
Agilent Test Receiver	N9038A	MY50010135	May 29, 2019	May 28, 2020
Schwarzbeck Antenna	VULB9168	9168-316	Nov. 27, 2018	Nov. 26, 2019
Schwarzbeck Antenna	VULB9168	9168-317	Nov. 27, 2018	Nov. 26, 2019
Max Full. Turn Table & Tower	MF7802	MF7802121	NA	NA
Max Full. Tower	MF7802	MF780208105	NA	NA
Software	Radiated_V8.7.08	NA	NA	NA
JYEBAO RF cable With 5dB PAD	LMR-600	CABLE-CH8-01.V	Sep. 28, 2018	Sep. 27, 2019
JYEBAO RF cable With 5dB PAD	LMR-600	CABLE-CH8-02.H	Sep. 28, 2018	Sep. 27, 2019
WOKEN RF cable With 5dB PAD	8D	CABLE-CH8-03.3M	Sep. 28, 2018	Sep. 27, 2019

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in Chamber No. 8.
- 3. The VCCI Site Registration No. R-12946.
- 4. Tested Date: Aug. 16, 2019

Report No.: RM180620D13B Reference No.: 190805D14 Page No. 15 / 38 Report Format Version: 6.1.5



6.3 Test Arrangement

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at an accredited test facility. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is up to 1 GHz.

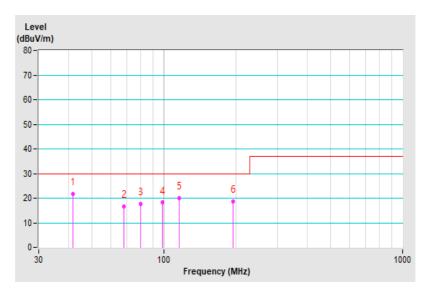
Note:

- The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for quasi-peak detection (QP) at frequency up to 1GHz.
- 2. The measurement distance is the shortest horizontal distance between an imaginary circular periphery just encompassing this arrangement and the calibration point of the antenna.

Note: Cable on the RGP must to be insulated.

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

Report No.: RM180620D13B Page No. 16 / 38 Report Format Version: 6.1.5

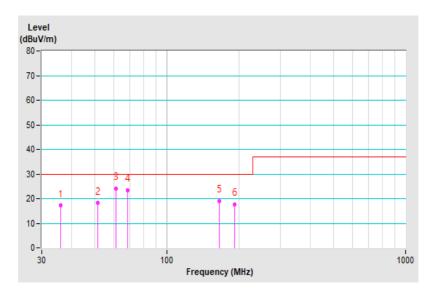

6.4 Test Results

Frequency Range	30MHz ~ 1GHz	Detector Function & Bandwidth	Quasi-Peak (QP), 120kHz
Input Power	230Vac, 50Hz	Environmental Conditions	31℃, 64%RH, 993mbar
Tested by	Vincent Lin		
Test Mode	Mode 1		

	Antenna Polarity & Test Distance : Horizontal at 10 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	41.57	21.64 QP	30.00	-8.36	1.00 H	25	39.97	-18.33	
2	67.95	16.77 QP	30.00	-13.23	4.00 H	346	36.28	-19.51	
3	79.91	17.62 QP	30.00	-12.38	4.00 H	322	39.78	-22.16	
4	98.51	18.16 QP	30.00	-11.84	4.00 H	240	40.10	-21.94	
5	115.89	19.95 QP	30.00	-10.05	3.52 H	54	39.72	-19.77	
6	195.38	18.75 QP	30.00	-11.25	4.00 H	74	38.20	-19.45	

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value



Frequency Range	30MHz ~ 1GHz	Detector Function & Bandwidth	Quasi-Peak (QP), 120kHz
Input Power	230Vac, 50Hz	Environmental Conditions	31℃, 64%RH, 993mbar
Tested by	Vincent Lin		
Test Mode	Mode 1		

	Antenna Polarity & Test Distance : Vertical at 10 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	36.11	17.17 QP	30.00	-12.83	1.00 V	321	36.58	-19.41	
2	51.53	18.17 QP	30.00	-11.83	2.00 V	326	36.22	-18.05	
3	61.45	24.22 QP	30.00	-5.78	1.96 V	332	43.12	-18.90	
4	68.58	23.54 QP	30.00	-6.46	2.25 V	332	43.39	-19.85	
5	165.87	18.94 QP	30.00	-11.06	1.00 V	160	35.72	-16.78	
6	192.94	17.64 QP	30.00	-12.36	1.00 V	158	36.75	-19.11	

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

7 Radiated Emission at Frequencies above 1GHz

7.1 Limits

For Class A Equipment

Frequency range (MHz)	Distance (m)	Detector type	Limits (dBuV/m)
1000 - 3000		Averege	56
3000 - 6000	2	Average	60
1000 - 3000	3	Peak	76
3000 - 6000		reak	80

For Class B Equipment

Frequency range (MHz)	Distance (m)	Detector type	Limits (dBuV/m)
1000 - 3000		Average	50
3000 - 6000	2	Average	54
1000 - 3000	ა	Peak	70
3000 - 6000		reak	74

Required highest frequency for radiated measurement

. to quillou in greece in equation in turning in the contraction in th							
Highest internal frequency (F _x)	Highest measured frequency						
$F_x \leq 108 \text{ MHz}$	1 GHz						
$108 \text{ MHz} < F_x \leq 500 \text{ MHz}$	2 GHz						
$500 \text{ MHz} < F_x \leq 1 \text{ GHz}$	5 GHz						
$F_x > 1 \text{ GHz}$	5 x F _x up to a maximum of 6 GHz						

NOTE 1 For FM and TV broadcast receivers, F_x is determined from the highest frequency generated or used excluding the local oscillator and tuned frequencies.

NOTE 2 F_x is highest fundamental frequency generated or used within the EUT or highest frequency at which it operates.

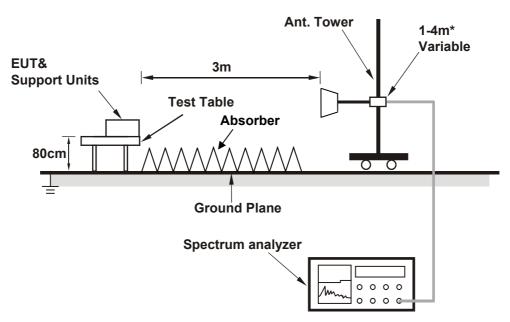
Where F_x is unknown, the radiated emission measurements shall be performed up to 6 GHz.

7.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Agilent Spectrum	E4446A	MY51100009	Jun. 6, 2019	Jun. 5, 2020
Agilent Test Receiver	N9038A	MY51210137	Jun. 6, 2019	Jun. 5, 2020
Agilent Preamplifier	8449B	3008A01292	Feb. 21, 2019	Feb. 20, 2020
MITEQ Preamplifier	AMF-6F-260400-33-8P	892164	Feb. 21, 2019	Feb. 20, 2020
EMCI Preamplifier	EMC184045B	980235	Feb. 21, 2019	Feb. 20, 2020
ETS Preamplifier	3117-PA	00215857	Nov. 25, 2018	Nov. 24, 2019
Schwarzbeck Horn Antenna	BBHA-9170	212	Nov. 25, 2018	Nov. 24, 2019
EMCO Horn Antenna	3115	6714	Nov. 25, 2018	Nov. 24, 2019
Max Full. Turn Table	MF7802	MF780208216	NA	NA
Software	Radiated_V8.7.08	NA	NA	NA
KIK + WOKEN RF cable With 3/4dB PAD	K1K50-UP0279-K1K50 -3000+WC01	Cable-CH10(3m) -04 +Cable-CH10-03	Jul. 10, 2019	Jul. 9, 2020
MICRO-TRONICS Notch filter	BRC50703-01	010	May 30, 2019	May 29, 2020
MICRO-TRONICS Band Pass Filter	BRM17690	005	May 30, 2019	May 29, 2020

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The 3dB beamwidth of the horn antenna is minimum 41degree (or w = 2.24m at 3m distance) for 1~6 GHz.
- 3. The test was performed in Chamber No. 10.
- 4. The VCCI Site Registration No. G-10427
- 5. Tested Date: Aug. 16, 2019



7.3 Test Arrangement

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at an accredited chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna can be varied from one meter to four meters, the height of adjustment depends on the EUT height and the antenna 3dB beamwidth both, to detect the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The spectrum analyzer system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.

Note:

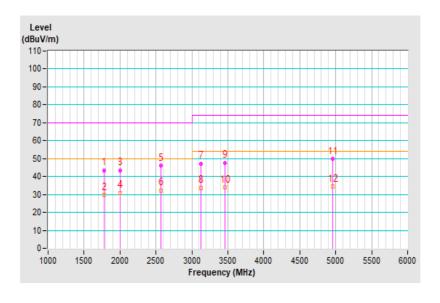
- The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection (PK) at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz for Average detection (AV) at frequency above 1GHz.
- 2. The measurement distance is the shortest horizontal distance between an imaginary circular periphery just encompassing this arrangement and the calibration point of the antenna.

Note: Cable on the RGP must to be insulated.

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

Report No.: RM180620D13B Page No. 21 / 38 Report Format Version: 6.1.5

^{* :}depends on the EUT height and the antenna 3dB beamwidth both.

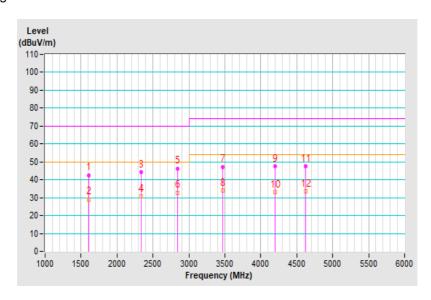

7.4 Test Results

Frequency Range	1GHz ~ 6GHz	Detector Function & Bandwidth	Peak (PK) / Average (AV), 1MHz
Input Power	230Vac, 50Hz	Environmental Conditions	27℃, 77%RH, 993mbar
Tested by	Chenghan Wu		
Test Mode	Mode 1		

	Antenna Polarity & Test Distance : Horizontal at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	1781.87	43.30 PK	70.00	-26.70	1.06 H	174	45.01	-1.71
2	1781.87	29.61 AV	50.00	-20.39	1.06 H	174	31.32	-1.71
3	1999.00	43.54 PK	70.00	-26.46	2.05 H	103	44.52	-0.98
4	1999.00	30.77 AV	50.00	-19.23	2.05 H	103	31.75	-0.98
5	2571.00	45.95 PK	70.00	-24.05	1.45 H	181	45.26	0.69
6	2571.00	32.26 AV	50.00	-17.74	1.45 H	181	31.57	0.69
7	3124.00	47.30 PK	74.00	-26.70	2.41 H	360	44.51	2.79
8	3124.00	33.78 AV	54.00	-20.22	2.41 H	360	30.99	2.79
9	3455.87	47.65 PK	74.00	-26.35	2.18 H	206	44.30	3.35
10	3455.87	33.86 AV	54.00	-20.14	2.18 H	206	30.51	3.35
11	4960.00	49.65 PK	74.00	-24.35	1.54 H	208	43.18	6.47
12	4960.00	34.37 AV	54.00	-19.63	1.54 H	208	27.90	6.47

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value



Frequency Range	1GHz ~ 6GHz	Detector Function & Bandwidth	Peak (PK) / Average (AV), 1MHz
Input Power	230Vac, 50Hz	Environmental Conditions	27℃, 77%RH, 993mbar
Tested by	Chenghan Wu		
Test Mode	Mode 1		

	Antenna Polarity & Test Distance : Vertical at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	1605.62	42.53 PK	70.00	-27.47	1.05 V	1	45.16	-2.63
2	1605.62	28.96 AV	50.00	-21.04	1.05 V	1	31.59	-2.63
3	2331.00	44.11 PK	70.00	-25.89	2.44 V	98	43.97	0.14
4	2331.00	30.63 AV	50.00	-19.37	2.44 V	98	30.49	0.14
5	2839.12	46.26 PK	70.00	-23.74	2.10 V	96	45.11	1.15
6	2839.12	32.72 AV	50.00	-17.28	2.10 V	96	31.57	1.15
7	3470.50	47.18 PK	74.00	-26.82	1.07 V	300	43.79	3.39
8	3470.50	33.80 AV	54.00	-20.20	1.07 V	300	30.41	3.39
9	4201.12	47.39 PK	74.00	-26.61	1.41 V	360	42.52	4.87
10	4201.12	32.90 AV	54.00	-21.10	1.41 V	360	28.03	4.87
11	4620.50	47.31 PK	74.00	-26.69	2.38 V	74	42.06	5.25
12	4620.50	33.35 AV	54.00	-20.65	2.38 V	74	28.10	5.25

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

Report No.: RM180620D13B Reference No.: 190805D14

General Immunity Requirements 8

EN 301 489-1 V2.1.1 (2017-02) / EN 301 489-17 V3.1.1 (2017-02), Immunity requirements						
Reference standard	Test specification	Performance Criterion				
EN 61000-4-2 ESD	Enclosure port: ±8kV Air discharge, ±4kV Contact discharge	В				
EN 61000-4-3 RS	Enclosure port: 80% AM (1kHz) 80-6000 MHz, 3V/m	А				

Page No. 24 / 38 Report Format Version: 6.1.5

Report No.: RM180620D13B Reference No.: 190805D14

8.1 Performance Criteria

General Performance Criteria

Performance criteria for continuous phenomena applied to transmitters and receivers (CT/CR)

During and after the test, the apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer when the apparatus is used as intended. In some cases this permissible performance level may be replaced by a permissible loss of performance.

During the test the EUT shall not unintentionally transmit or change its actual operating state and stored data.

If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deduced from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.

• Performance criteria for transient phenomena applied to transmitters and receivers (TT/TR)

After the test, the apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer, when the apparatus is used as intended. In some cases this permissible performance level may be replaced by a permissible loss of performance.

During the EMC exposure to an electromagnetic phenomenon, a degradation of performance is, however, allowed. No change of the actual mode of operation (e.g. unintended transmission) or stored data is allowed.

If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deduced from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.

Performance criteria for equipment which does not provide a continuous communication link

For radio equipment which does not provide a continuous communication link, the performance criteria described in CT/CR and TT/TR are not appropriate, then the manufacturer shall declare, for inclusion in the test report, his own specification for an acceptable level of performance or degradation of performance during and/or after the immunity tests.

The performance criteria specified by the manufacturer shall give the same degree of immunity protection as called for in CT/CR and TT/TR.

• Performance criteria for ancillary equipment tested on a stand alone basis

If ancillary equipment is intended to be tested on a stand alone basis, the performance criteria described in CT/CR and TT/TR are not appropriate, then the manufacturer shall declare, for inclusion in the test report, his own specification for an acceptable level of performance or degradation of performance during and/or after the immunity tests.

The performance criteria specified by the manufacturer shall give the same degree of immunity protection as called for in CT/CR and TT/TR.

 Report No.: RM180620D13B
 Page No. 25 / 38
 Report Format Version: 6.1.5

Product Specific Performance Criteria

The particular performance criteria which are specified in the relevant part of EN 301 489 series dealing with the particular type of radio equipment, take precedence over the corresponding parts of the general performance criteria.

Where particular performance criteria for specific functions are not given, then the general performance criteria shall apply.

EN 301 489-17, Broadband Data Transmission Systems

the apparatus if used as intended.

The performance criteria are:

- performance criteria A for immunity tests with phenomena of a continuous nature (CT/CR);
- performance criteria B for immunity tests with phenomena of a transient nature (TT/TR);
- performance criteria C for immunity tests with power interruptions exceeding a certain time.

	Special conditions	for EN 301489-17
Criteria	During test	After test
A	Shall operate as intended. May show degradation of performance (see note1).	Shall operate as intended. Shall be no degradation of performance (see note 2). Shall be no loss of function.
	Shall be no loss of function.	Shall be no loss of stored data or user programmable functions.
В	May show loss of function (one or more). May show degradation of performance (see note 1). No unintentional transmissions.	Functions shall be self-recoverable. Shall operate as intended after recovering. Shall be no degradation of performance (see note 2). Shall be no loss of stored data or user programmable functions.
С	May be loss of function (one or more).	Functions shall be recoverable by the operator. Shall operate as intended after recovering. Shall be no degradation of performance (see note 2).

- Note 1: Degradation of performance during the test is understood as a degradation to a level not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance.

 If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from
- Note 2: No degradation of performance after the test is understood as no degradation below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. After the test no change of actual operating data or user retrievable data is allowed. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

Note: The BT linking mode is activated and monitoring communication status via Tablet by ping command during and after tests.

9 Electrostatic Discharge Immunity Test (ESD)

9.1 Test Specification

Basic Standard: EN 61000-4-2 **Discharge Impedance:** 330 ohm / 150 pF

Discharge Voltage: Air Discharge: N/A * As client's request, EUT only tested "Indirect Discharge"

Contact Discharge: ±2kV, ±4kV (Indirect)

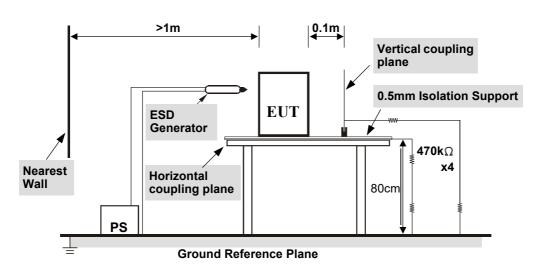
Number of Discharge: Minimum 20 times at each test point

Discharge Mode: Single Discharge Discharge Period: 1-second minimum

9.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
EM Test ESD Simulator	Dito	V0707102251	Apr. 08, 2019	Apr. 07, 2020

Note:


- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in ESD Room No. 2.
- 3. Tested Date: Aug. 21, 2019

9.3 Test Arrangement

- a. Electrostatic discharges were applied only to those points and surfaces of the EUT that are accessible to users during normal operation.
- b. The test was performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.
- c. The time interval between two successive single discharges was at least 1 second.
- d. The ESD generator was held perpendicularly to the surface to which the discharge was applied and the return cable was at least 0.2 meters from the EUT.
- e. Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- f. Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were complete.
- g. At least ten single discharges (in the most sensitive polarity) were applied to the Horizontal Coupling Plane at points on each side of the EUT. The ESD generator was positioned at a distance of 0.1 meters from the EUT with the discharge electrode touching the HCP.
- h. At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the **V**ertical **C**oupling **P**lane in sufficiently different positions that the four faces of the EUT were completely illuminated. The **VCP** (dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the EUT.

Report No.: RM180620D13B Page No. 27 / 38 Report Format Version: 6.1.5

TABLE-TOP EQUIPMENT

The configuration consisted of a wooden table 0.8 meters high standing on the **G**round **R**eference **P**lane. The **GRP** consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A **H**orizontal **C**oupling **P**lane (1.6m x 0.8m) was placed on the table and attached to the **GRP** by means of a cable with $940k\Omega$ total impedance. The equipment under test, was installed in a representative system as described in section 7 of

EN 61000-4-2, and its cables were placed on the **HCP** and isolated by an insulating support of 0.5mm thickness. A distance of 1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

Report No.: RM180620D13B Reference No.: 190805D14

9.4 Test Results

Test mode	Mode 1	Input Power	230Vac, 50Hz
Environmental Conditions	25 °C, 39% RH 997 mbar	Tested by	Sean Chou

Test Results of Indirect Application					
Discharge Level (kV)	Polarity (+/-)	Test Point	Horizontal Coupling Plane	Vertical Coupling Plane	Performance Criterion
2, 4	+/-	Four Sides	Note	Note	Α

Description of test points of indirect application:

1. Front side

2. Rear side

3. Right side

4. Left side

Note: The EUT function was correct during the test.

*As client's request, the EUT only tested "Indirect Discharge", the more reason and detail will be put in the User's Manual.

Report No.: RM180620D13B Reference No.: 190805D14 Page No. 29 / 38 Report Format Version: 6.1.5

10 Radiated, Radio-frequency, Electromagnetic Field Immunity Test (RS)

10.1 Test Specification

Basic Standard: EN 61000-4-3

Frequency Range: 80 MHz ~ 6000 MHz,

Field Strength: 3 V/m

Modulation: 1kHz Sine Wave, 80%, AM Modulation Frequency Step: 1 % of preceding frequency value

Polarity of Antenna: Horizontal and Vertical

Antenna Height: 1.5m

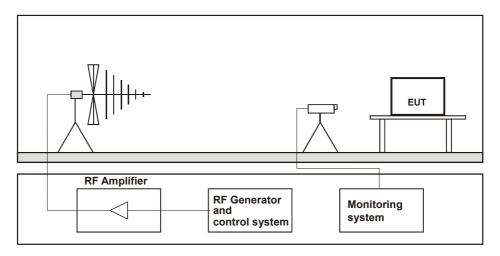
Dwell Time: 3 seconds

10.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
AgilentSignal Generator	E8257D	MY48050465	Jun. 7, 2019	Jun. 6, 2020
PRANA RF Amplifier	AP32DP280	0811-894	NA	NA
TESTQAmplifier	CBA 1G-275	T44344	NA	NA
AR RF Amplifier	35S4G8AM4	0326094	NA	NA
AR RF Amplifier	100S1G4M3	0329249	NA	NA
AR Controller	SC1000M3	305910	NA	NA
ETS Electric Field Sensor	HI-6105	00086973	Dec. 4, 2018	Dec. 3, 2019
BOONTON RF Voltage Meter	4232A	10180	May 29, 2019	May 28, 2020
BOONTON Power Sensor	51011-EMC	34152	May 29, 2019	May 28, 2020
BOONTON Power Sensor	51011-EMC	34153	May 29, 2019	May 28, 2020
ARLog-Periodic Antenna	AT6080	0329465	NA	NA
EMCO BiconiLog Antenna	3141	1001	NA	NA
ARHigh Gain Antenna	AT4010	0329800	NA	NA
SchwarzbeckLOG ANTENNA	Stlp 9149	9149-260	NA	NA
CHANCE MOST Full Anechoic Chamber (9x5x3m)	Chance Most	RS-002	Feb. 6, 2019	Feb. 5, 2020
Software	RS_V7.6	NA	NA	NA

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in RS Room No.2.
- 3. The transmit antenna was located at a distance of 3 meters from the EUT.
- 4. Tested Date: Aug. 20, 2019


Report No.: RM180620D13B Page No. 30 / 38 Report Format Version: 6.1.5

10.3 Test Arrangement

The test procedure was in accordance with EN 61000-4-3.

- a. The testing was performed in a fully anechoic chamber.
- b. The frequency range is swept from 80 MHz to 6000 MHz, with the signal 80% amplitude modulated with a 1kHz sine wave.
- c. The field strength level was 3 V/m.
- d. The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

Table-top Equipment

The EUT installed in a representative system as described in section 7 of EN 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

Report No.: RM180620D13B Reference No.: 190805D14

10.4 Test Results

Test mode	Mode 1	Input Power	230Vac, 50Hz
Environmental Conditions	24 °C, 69% RH	Tested by	Bernie Lu

Frequency Delerity	A zimuth(°)	Applied Field Strength		Observation	Domorko	Performance	
(MHz)	Polarity	Azimuth(°)	(V/m)	Modulation	Observation	Remarks	Criterion
80 - 6000	V&H	0, 90, 180, 270	3	80% AM (1kHz)	Note*	-	А

^{*}The exclusion band for the transmitter and / or receiver part of the 2.4GHz band equipment under test shall extend from 2280MHz to 2603.5MHz.

Note: The EUT function was correct during the test.

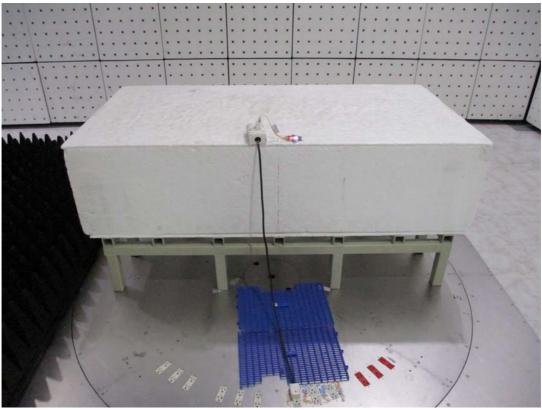
11 Pictures of Test Arrangements

11.1 Conducted Emission from the AC Mains Power Port

Report No.: RM180620D13B Page No. 33 / 38 Report Format Version: 6.1.5

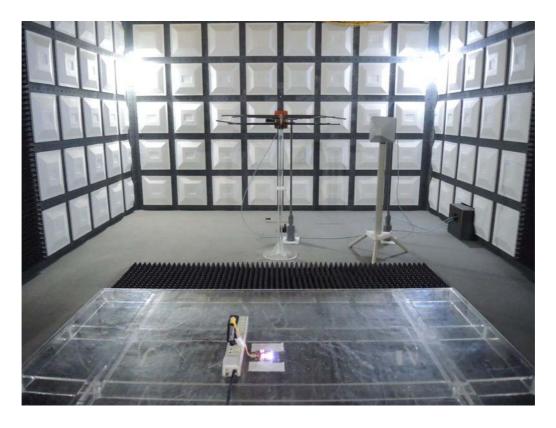
Report No.: RM180620D13B Reference No.: 190805D14

11.2 Radiated Emission at Frequencies up to 1GHz



11.3 Radiated Emission at Frequencies above 1GHz

Report No.: RM180620D13B Reference No.: 190805D14 Page No. 35 / 38 Report Format Version: 6.1.5


11.4 Electrostatic Discharge Immunity Test (ESD)

11.5 Radio-frequency, Electromagnetic Field Immunity Test (RS)

Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauVeritas.com
Web Site: www.bureauVeritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---

Report No.: RM180620D13B Page No. 38 / 38 Report Format Version: 6.1.5