
Teaching material for use from grade 3

Coding with the
Calliope mini

Coding with the Calliope mini
Programming in primary school

Teaching material for use from grade 3

Authors: Michael Abend (Glossary, the Calliope mini and the Nim game, the Calliope mini as a spelling trainer, the
Calliope mini as a stopwatch and countdown counter),
Kirstin Gramowski (Morse code with the Calliope mini, the Calliope mini as a 1 x 1 mental arithmetic trainer, the
Calliope mini as a random generator, determine neighbouring numbers with the Calliope mini),
Lars Pelz (the Calliope mini as a metronome, the Calliope mini as a mini piano, the Calliope mini as an automat-
ic bicycle rear light, generating image impulses and stimulus words with the Calliope mini),
Bernd Poloczek (Learning map, epilogue (experiences & conditions for success))

Consultants: Michael Abend, Kirstin Gramowski, Lars Pelz, Bernd Poloczek

Editor: Patrizia Schwarzer

Illustration: Calliope gGmbH, Berlin: Cover, p. 3, p. 5, p. 62/63, back cover zweiband.media GmbH, Berlin: all remaining
illustrations on the inside

Photo: Sibylle Baier, Berlin: p. 64

Cover design: original cover design made by COSAKitchen, Corinna Babylon, Berlin
 English cover design made by Calliope gGmbH, Berlin

Layout, graphics and technical implementation: zweiband.media GmbH, Berlin

www.cornelsen.de
www.cornelsen.de/calliope

The websites of third parties, the Internet addresses of which are given in this textbook, were carefully checked before going
to press. The publisher assumes no liability for the topicality and content of these pages or those linked to them.

2nd edition Print 2018

All prints in this edition are unchanged in terms of content and can be used in parallel in lessons.

Translated by Calliope gGmbH based on the original title “Coden mit dem Calliope mini” 2019 Calliope gGmbH, Berlin

© 2017 Cornelsen Verlag GmbH, Berlin

This document is licensed under CC-BY-SA 4.0.
The terms of use can be found at the end of the title.

ISBN 978-3-06-600012-2

Print: Athesiadruck GmbH

Advice: The NEPO Editor is constantly being
improved and further developed. It may
happen that some blocks look a little
different. However, the functions remain
the same, so that you can realise all the
shown exercises.

Table of contents

1

Table of contents
Preface 2

Introduction to coding with the Calliope mini 3

How to find your way around 6

Subject teaching Programming difficulty

The Calliope mini as an automatic bicycle rear light Beginner level 7

The Calliope mini as a mini piano Beginner level 10

The Calliope mini as a metronome Beginner level 14

The Calliope mini as a stopwatch and countdown counter Beginner level 17

English Programming difficulty

Morse code with the Calliope mini Beginner level 22

Generate image impulses and stimulus words with the Calliope mini Advanced level 26

The Calliope mini as a spelling trainer Advanced level 30

Mathematics Programming difficulty

The Calliope mini as a random generator Beginner level 35

The Calliope mini as a 1x1 mental arithmetic trainer Medium level 42

Determine neighbouring numbers with the Calliope mini Medium level 49

The Calliope mini and the Nim game Advanced level 53

Glossary 59

Learning map 62

Epilogue 64

Preface

2

Dear teachers, dear educational professionals,

The writing of computer programs, so-called coding, is still
a relatively new trend at school, which offers the emerging
generation the opportunity to develop technological
knowledge and to use it for the action-oriented discovery
of the world.

Cornelsen Verlag supports the initiative of Calliope gGmbH,
with the help of which every schoolchild in Germany from
the 3rd grade onwards should be able to have playful
access to the digital world via a small programmable
microcontroller, the Calliope mini.

“With the Calliope mini even primary school children can
learn creatively and playfully how the digital world works.”
(Gesche Joost, professor for design research at the Berlin
University of the Arts and co-founder of Calliope gGmbH)

At first glance, programming appears not to be a trivial
necessity, even at primary school. Neither the primary
school syllabus nor other (educational) regulations make
the subject binding. However, if programming is not
viewed as an end in itself, but is rather placed in a more
general context, a wide range of points of contact opens
up, especially for issues relevant to primary schools.

One aspect is the importance of media literacy. This
encompasses much more than the pure operating
competence of digital devices. Therefore, not only working
with media, but also learning about media plays a major
role. A development of competence in the area of coding
also contributes to a basic understanding of the digital
world that surrounds us, which allows us to demystify this
technological “black box”. Instead of remaining in a
receptive stage, an initial understanding of programming
enables critical, reflective judgment, such as making use of
technology (e.g. processing routines) and initiating the
confident handling of technological processes. In addition,
participation in the digital society is made possible.

During the course, programming opens up a range of skills
that are specifically developed: Coding …

 – develops exploratory and discovery learning through a
playful approach and fault-tolerant work.

 – develops abstract capability, modelling and prob-
lem-solving skills as well as analytical thinking and
clear structuring.

 – develops higher level skills: Independence, initiative
and the creation of own hypotheses.

 – develops constructive approaches and creative-pro-
ductive solution processes.

 – contributes to a high level of student activation:
Coding creates opportunities for action and discus-
sion.

 – It develops natural differentiation by means of many
correct paths to the (self-established) goal and offers a
wide range of design options.

As the didactic cooperation partner of Calliope gGmbH, at
Cornelsen Verlag we group together the above-mentioned
points and transfer them in this teaching material into
specific examples with reference to the syllabus.

What to expect:
 – 11 coding examples with the Calliope mini tailored for

the contents of the syllabus for the subjects general
knowledge, German and mathematics in primary
school from grade 3

 – Step-by-step instructions for programming beginners
- You can create your own programs without any
previous programming knowledge and systematically
build up your coding skills.

 – To understand coding as a tool for problem solving
and to recognise that it is never just an end in itself

 – Selected examples that offer a different approach to
syllabus topics (including the example of Morse code
with the Calliope mini) - which cannot be created with
conventional media (books, notebooks, ...) or cannot
be created very quickly (e.g. the randomly controlled 1
x 1 mental arithmetic trainer) - or show specific
application references (e.g. the Calliope mini as an
automatic bicycle rear light)

Try it out for yourself and later in your class!

Introduction to coding with the Calliope mini

3

Fortunately, a computer can not (yet) think for itself. It
consists of an electronic circuit (processor) that can only
calculate with ones and zeros, but it does so at an almost
unimaginable speed. What and how the computer should
calculate must be “taught” beforehand. This activity is
called programming or coding.
When people have tasks to accomplish (in this context we
are speaking about problems) that are time-consuming
and labour-intensive to solve, they can transfer the
processing of such problems to a computer. To do so, the
procedure for solving the problem must be formulated as
a series of clear instructions. Such a sequence is called an
“algorithm” in computer science.

An algorithm can be written in a programming language.
This is a kind of interim solution, a language that can still
be read by humans, but can also be processed by the
computer. The resulting program adjusts the electronic
circuitry of the computer so that it carries out exactly the
work steps that were previously described in the algo-
rithm. The structure of an algorithm mostly follows the
basic principle 1) input (information that reaches the
computer from its environment), 2) processing (according
to the rules of the algorithm, whereby new information
arises) and 3) output (the newly created information via
various means).

How does a computer “think”?

Coding with a graphic programming language using the example of NEPO®

Programming languages basically consist of commands,
decisions and repetitions. A sequence of these instructions
stored in the computer is called a program. Programs
clearly and precisely describe what the computer running
a program should do to solve a problem associated with it.
There are different programming languages (text-based
and graphic) with which programs are written. The term
coding refers to the activity of creating a program i.e. the
coding of a sequence of instructions to solve a problem for
the computer.
In contrast to text-based programming languages, which
require a high level of abstract capacity, graphic program-
ming languages offer a simple introduction to coding. With
them, the basic concepts of computer programming can
be learned in a playful and explorative way. Prefabricated
code modules (blocks) are nested like puzzle pieces in
order to create programs. So-called editors (interfaces
within which programming is carried out) enable a quick
and comprehensive overview of the commands and
structures available.

Another advantage of graphic programming is that
program elements (blocks) can only be put together where
they are allowed to according to the underlying system of
rules. This avoids syntax errors, which can cause great
frustration when coding in text-based programming
languages. Graphic programming languages are widely
represented today. At their core, they always work
according to the same principles. Once you have under-
stood the basic idea of coding, i.e. the formulation of a
specific sequence of instructions as a problem-solving
tool, you can immediately start using any graphic
programming language.
In the following examples, the graphic programming
language NEPO® is used in the Open Roberta Lab® from the
Fraunhofer Institute. The internet-based editor of this open
source platform does not require any installation, just an
internet connection and an up-to-date browser.
In the following you will get to know the editor Open
Roberta Lab® and the programming language NEPO®:

 – First go to the calliope.cc/en/coding/editors website in
a current browser. Then click on the editor Open
Roberta Lab®.

 – Inside the Open Roberta Lab® select the system
Calliope.

 – After selecting the system, you can start programming
with NEPO®.

Introduction to coding with the Calliope mini

4

Procedure for the following examples as well as general tips for coding:

The Open Roberta Lab® and the programming language NEPO®

Set beginner or expert level as indicated in the example.
The two modes do not refer to the level the difficulty, but
rather contain more or less blocks.
When you click on the NEPO® categories, the associated
blocks appear. An explanation of the respective block
appears when the mouse pointer hovers over it.
Select the required block and, holding down the left
mouse button, drag it under the red “Start” block. You
place all other blocks in the appropriate places within the
code so that the new block clicks into the existing
structure.
Clicking the right mouse button offers you a number of
further options (e.g. copying, deleting a block)
A comprehensive explanation of the blocks and their
possible uses can be found at:
https://jira.iais.fraunhofer.de/wiki/display/ORInfo/
Programmieren+Calliope+mini

The program can be executed in simulation mode on the
screen. You can check on the screen whether your
program is running as you want it to. To run this simula-
tion, click on “SIM” in the right-hand column.
Saving the code: To transfer the program created to the
Calliope mini and then test it, click on the “Play” button at
the bottom right and follow the instructions on the screen.
Create a profile if you want to make your programs accessi-
ble from anywhere, continue working on programs or
share them with others.

1

2

3

4

5

6

7

8

For coding:
Click on the blocks and drag
them to the desired location
until they click into place.

Your program/code
is created here

Selection NEPO® Level: “Beginner”
and the associated categories

Simulation
of the code

Delete block

Save the code

For example export saved
programs as xml etc.

Selection NEPO® Level: “Expert”
and the associated categories

Introduction to coding with the Calliope mini

5

How to transfer your program to the Calliope mini:
 – Connect the Calliope mini to the computer using a USB

to USB mini cable.
 – The Calliope mini appears as a storage device (USB

drive).
 – Save the program file downloaded from NEPO® either

directly on the Calliope mini or move the file from the
local storage location to the “MINI” drive.

 – While the program is being transferred, the light to the
left of the USB port flashes.

 – After the transfer is complete, the light lights up
continuously as long as the circuit board is supplied
with power.

 – The Calliope mini is now ready to execute the program
that has been transferred. With the Calliope 2016 you
must first press the reset button.

 – Note: The Calliope mini saves only one program at a
time. If a new program is transmitted, it will overwrite
the program that has already been loaded.

 – Start the program on the Calliope mini by triggering the
input specified in your programming, for example by
pressing the A button.

 – You can then see the result of your program on the
Calliope mini.

The most important functions of the Calliope mini

Further information about functionalities and sensors can be
found at: calliope.cc/en/calliope-mini/features

LED screen

Pin 1 Pin 2

Button A Button B

Pin 0 Pin 3

Minus-Pin

Mini-USB

You will need the following to test the examples

A device with internet capability
(e.g. laptop, PC)

The web-based Editor NEPO® from
Open Roberta Lab® for the programming,
which can be found at

 calliope.cc/en/coding/editors

A battery pack, to supply the Calliope mini
with electricity

 A connection cable (USB-mini to USB) to
transfer the code to the Calliope mini

Further assistance can be found at
calliope.cc/en/lets-start/intro

Program the Calliope mini with NEPO®
So-called microcontrollers or microcomputers are suitable
for getting started with programming. These have very
simple input and output options (e.g. a few buttons
instead of a keyboard, a few LEDs instead of a high-resolu-
tion display).
The Calliope mini is such a microcontroller that can be
controlled, among other things, by means of a graphic
programming language and works according to the
principles of an algorithm. The Calliope mini has sensors
for input, for example, which can measure the light
intensity, its position in space or the strength of the earth’s
magnetic field. Buttons can also be pressed to generate
inputs. The Calliope mini has, for example, an LED screen,

an RGB LED and a loudspeaker available for output.
Furthermore, motors can be connected whose speed and
direction of rotation can be controlled by the processor in
the Calliope mini.
If you have coded your first own program with NEPO®, you
can transfer it to your Calliope mini and run it there.
All examples in this book combine both components
(NEPO® and Calliope mini) and show various ways in which
you can program the Calliope mini so that it can be used
effectively in your specialist teaching.

How to find your way around

6

Structure of the examples

English

22

The exercise
In this exercise, the Calliope mini is programmed so that it
can be used as a Morse code device. To display Morse
code, all that is required is the output of a point and a
horizontal line on the LED screen. The Morse code is
audibly supported by additional programming of tones of
different lengths and the self-coded mini Morse code also
works when the sender and recipient cannot see each
other.

Subject matter
English
The students have to deal with foreign scripts and systems
of symbols. They will learn Morse code, discuss how it can
be represented and the advantages of programming Morse
code on the Calliope mini (e.g. simultaneous visual and
auditory output, functionality even in the dark, etc.).

Position in the syllabus

Content-related skills
In the field of Language and use of language, the students
can express themselves on issues in a structured manner,
also using digital communication media, by dealing with
foreign scripts and symbol systems.

Process-related skills
In the field of Speaking and listening the students can use
media as a means of everyday communication.

Requirements

Programming focus:
 – Input via buttons and Touch-Pins, output via LED

screen, loudspeaker and RGB LED
 – Structures: conditional statement, infinite loop,

formulating conditions
 – NEPO® categories used: Action, sensors, control

Programming difficulty:
 – Beginner level
 – NEPO® Level: Beginner

Morse code with the Calliope mini

The code
This is what the code of the finished program looks like. It is defined step by step below.

Morse code with the Calliope mini

23

So that the user can see that the Morse code is in opera-
tion, the RGB-LED is switched on immediately when the
program starts:
Select the block “Turn LED on colour” from the catego-
ry Action and add it to the “Start” block.

An infinite loop is required so that Morse code can be
displayed infinitely:
Select from the category Control the block “repeat
indefinitely/do” and add it.

When the Button A is pressed (if), a Morse point should be
displayed (do):
To establish this condition, you need a branch.
Select the block “if/do” from the category Control and
put it in the loop.

The desired input option (here via the sensor “Button A”) is
selected:
Take from the category Sensors the block “Button A
pressed?” and append it to the branch as a condition
(blue area).

1

2

3

4

Steps to create the program for the output of Morse code

The Morse point is shown on the LED screen:
Select the block “Show image” from the category
 Action and mark the box in the middle of the 5 x 5
grid to display the Morse point.

When Button B is pressed (if), a Morse line should be
displayed on the LED screen (do):
For this condition, you need another branch.
To do this, click on the “+” next to the “if” in the branch.
Select from the category Sensors the block “Button B
pressed?” and insert it as a condition (blue area) in
the new branch.
Select the block “Show image” from the category
 Action and mark three points in the horizontal of the
5 x 5 grid to display the Morse line.

5

6

loop

branch

branch

condition

English

24

In order for the recipient to be able to differentiate
between letters and words clearly, the code needs to be
expanded by further branches:

1 Delimitation letter:
To do this, select the “Pin 2 pressed?” block from the
category Sensors and add it to another branch. Use the
“Show image” block to create a vertical line from the
category Action to separate individual letters.

2 Delimitation word:
Create another branch and add from the category
 Sensors the block “Pin 3 pressed?” With the block “Show
image” from the category Action you create a cross to
delimit individual words.

8

In order for the Morse characters to be legible, they must
be separated from one another. For this purpose, a pause
is inserted after each output and then the screen content
is cleared:
Select the “Wait ms” block from the category Control and
define the length of the pause here (1000 ms = 1 second).
Now delete the screen using the “Clear display” block from
the category Action .

7

Morse code with the Calliope mini

25

Transfer the program code to your Calliope mini by downloading the program and saving it on the Calliope mini (calliope.cc/
en/lets-start/start-coding).

Notes and information

Implementation scenarios in class Expansion possibilities
This code works well for working in pairs. As an extension,
the students can program an automatic Morse word of their
choice.

Background knowledge
The artist and inventor Samuel Morse developed the first
telegraph from 1837, which enabled fast communication
over very long distances. Instead of words, the telegraph
could only send electrical impulses. Fixed combinations of
short and long power surges represent the respective
letters.

Notes that connect subjects
The topic Morse code can be well located in the syllabus of
the subject teaching:
The students can use different types and methods of
communication, describe and reflect on selected inven-
tions, their development and the impact on the living
environment, also with a view to the future.

Supporting sound output:
As an extension of the program, the Morse code can be
supported audibly by a sound output. To do this, select the
block “Play whole note C” from the category Action and
insert it under the block “Show image”. Choose a suitable
pitch and length.

Note: The block “Wait until” is no longer necessary, as the
length of the tone also determines the length of the display
of the Morse code on the LED screen.

Transmit Morse code with the Calliope mini:
The category Messages offers the possibility to let several
Calliope mini microcontrollers communicate with each
other. In this way a Morse code can be sent from Calliope
mini to Calliope mini or to different boards at the same
time.

9

Subject matter

Description of
how the program
works

Relation to the primary school
syllabus (exemplified in the
2016 primary school education
plan, Baden-Württemberg)

Information on the programming focus/diffi-
culties and the level to be set before coding in
the NEPO® Editor

Representation of the
entire program

Chapter

step-by-step
development
of the code

Notes on teaching and
further ideas on coding

text in bold is in
the glossary

The Calliope mini as an automatic bicycle rear light

7

The exercise
The Calliope mini is programmed as an automatic bicycle
rear light. The light should turn on when it gets dark and
turn off again as soon as it is bright enough. To do this, the
light sensor built into the Calliope mini is queried.

The light sensor of the Calliope mini converts the inciden-
tal light into a numerical value so that the respective light
levels can be differentiated by the Calliope mini processor.
The lower the incidence of light, the lower the associated
numerical value. The programmer must define the
numerical values determined by the sensor for which the
boundary between “dark” and “light” is drawn.

Subject matter
General knowledge
When programming the automatic bicycle light, the
students learn that the Calliope mini can measure the
strength of the incidental light. They find that you can vary
the light intensity by putting the Calliope mini in the shade.

Position in the syllabus

Content-related skills
In the field of Space and mobility, the students can
describe and implement requirements for the safe
participation in traffic, as well as checking and maintaining
their bicycle with regard to its traffic safety.

Process-related skills
In the field of Communication and understanding, the
students can express ideas, learning and solution paths
and knowledge gained (e.g. when planning and building
technical products or when comparing means of trans-
port).

Requirements

Programming focus:
 – Query light sensor
 – Program structures used: Infinite loop, branch,

condition, command
 – NEPO® categories used:

Action, control, sensors, mathematics, logic

Programming difficulty:
 – Beginner level
 – NEPO® Level: Beginner

Steps to create the program for an automatic bicycle rear light

The Calliope mini as an automatic bicycle
rear light

The code
This is what the code of the finished program looks like. It is defined step by step below.

So that the Calliope mini can react to a change in the inci-
dence of light at any time, the light intensity must be meas-
ured continuously: For this you need an infinite loop. Any
blocks you put in the infinite loop are repeated over and over.
Select the “Repeat/do” block from the category Control and
add it to the “Start” block.

1

loop

General knowledge

The light intensity measured should be divided into two
areas: “dark” and “light”:
For this you need a branch.
Select the “if/do/else” block from the category Control
and insert it into the loop.
This branch, based on a condition, is used to differentiate
between two alternative program processes.

2

=
≠
<
≤
>
≥

The threshold value must be checked in order to distin-
guish between “light” and “dark”:
For this you need a comparison between two numbers.
Select from the category Logic the block = . Add it
as a condition to the branch.

3

The light should be turned on as soon as it is dark enough:
For this, the following condition must be fulfilled: The
measured value of the ambient light falls below a specified
threshold value. The “=” sign (equals) is unsuitable for this
and the “<” sign (less than) must be selected.
To do this, click on the “=” symbol and select “<”.

4

The intensity of the incidental light must be measured by
the Calliope mini and provided as a numerical value for
comparison:
Select the block “Enter value for ambient light” from the
category Sensors and insert it into the left-hand space of
the block “is smaller than”.
The Calliope mini determines the light intensity as a
number between 0 (no light) and 255 (very bright).

5

8

branch

loop

branch

condition

The Calliope mini as an automatic bicycle rear light

9

The comparison value for the light intensity
determined must be specified:
Select block “0” (zero) from the category
 Mathematics and insert it into the right-hand
space of the block “is less than”. Then click on
the field with the zero and enter a number
between 0 and 255. You can determine the
desired value by trial and error. A good start
value is 30. This defines the threshold value,
which indicates the light intensity from which
the area around the Calliope mini is considered
“dark”.
The condition is now complete.
It applies when the level of ambient light is less
than the set value.

6

The RGB-LED should be turned on if the
condition applies that means it is “dark”:
Select the block “Turn LED on colour” from the
category Action and insert it into the branch
at the gap marked “do”. In the event that the
condition does not apply, i.e. it is “bright”, the
RGB LED should be turned off.
Select the block “Turn LED off” from the
category Action and insert it into the branch at
the gap marked “else”.

Transfer the program code to your Calliope mini
by downloading the program and saving it on
the Calliope mini (calliope.cc/en/lets-start/
start-coding).

7

8

Notes and information

Implementation scenarios in class
In daylight or artificial light, the RGB LED should be
turned off after the program has started. Place the
Calliope mini in the shade, for example by shading it with
your hands, placing it in a shoe box with a lid, or holding
it under your desk. The RGB LED should now turn on. If it
does not, increase the threshold a little (see step 6) so
that the environment is classified as “dark” sooner.

Application reference
Light sensors are used in environments in which it is
necessary to create additional brightness when the
natural lighting is too low. These include, for example, the
automatic dipped beam in vehicles, an automatic flash in
a camera, the regulation of the display brightness on
smartphones or street lights that turn on in the evening
and turn off in the morning.

Expansion possibilities
Instead of just turning on the RGB-LED, the students can
also run self-created image sequences on the LED screen
when the Calliope mini is in the dark. A short pause (“wait
ms” block) is inserted between the images.

General knowledge

10

The Calliope mini as a mini piano
The exercise
The Calliope mini is first programmed to output individual
tones, which are output via the tone generator. The
contact between the buttons created by the touch of the
hands with the Touch-Pins is the trigger for the sound
output.
The first program already contains all the basic structures
that are necessary to complete the mini piano.

Subject matter
Subject teaching
With the mini piano, students in the field of Technologycan
learn that their bodies conduct electricity. With their
fingers they create a connection between two contact
surfaces on the Calliope mini. Conductive connections are
indicated with different tones. In this way a mini instru-
ment with four different tones is achieved.

Position in the syllabus

Content-related skills
The students explore selected body parts in the field of
Nature and life. By creating a connection between two
Calliope mini contact surfaces with your fingers, you will
learn that your body conducts electrical current.

Process-related skills
In the field World, the students explore and understand
methods of exploring and gaining knowledge (e.g.
observing, experimenting, dealing systematically) and
applying them.

Requirements

Programming focus:
 – Input by means of Touch-Pins, output via speaker

and LED screen
 – Structures: Infinite loop, branch, command
 – NEPO® categories used: Control, action and sensors

Programming difficulty:
 – Beginner level
 – NEPO® Level: Beginner

The code
This is what the code of the finished program looks like. It is defined step by step below.

 0 1 2 3 4

 0 1 2 3 4

 0 1 2 3 4

 0 1 2 3 4

 0 1 2 3 4

 0 1 2 3 4

 0 1 2 3 4

 0 1 2 3 4

The Calliope mini as a mini piano

11

Transfer the program code to your Calliope mini by downloading the program and saving it on the Calliope mini
(calliope.cc/en/lets-start/start-coding).

5

The Calliope should generate a tone if a Touch-Pin is
touched. For this you need a branch.
In the category Control , select the “if/do” block and insert
it into the loop.

2

Steps to create the program for a single tone

You need an infinite loop so that the Calliope mini can
react to any number of consecutive Touch-Pin contacts:
Select the “Repeat indefinitely/do” block from the
category Control and add it to the “Start” block.

1

In order to decide whether a Touch-Pin has been touched
or not, the Calliope mini must determine its status and
provide it as a truth value:
Select the “Pin 0 pressed?” block from the category
 Sensors and add it to the branch as a condition (blue
area).

3

A tone should be played if the condition applies meaning
that the Touch-Pin is touched:
Select the “Play whole note c” block from the category
 Action and insert it into the gap in the branch marked
“do”. This command has the Calliope mini generate the
specified tone.

4

branch

loop

condition

command

General knowledge

12

Transfer the program code to your Calliope mini by downloading the program and saving it on the Calliope mini
(calliope.cc/en/lets-start/start-coding).

5

Steps to create the program for multiple tones

Expand the program to query the other Touch-Pins so
that additional tones can be played:
To do this, click on the “+” next to the “if”. Another branch
appears. The new branch is executed if Pin 0 is not
connected to the Minus-Pin. This gives the Calliope mini
the opportunity to check another Touch-Pin.

1

Set which note the Calliope mini should play when
Touch-Pin 1 is touched:
From the category Sensors add the condition for
checking the Touch-Pin 1. Then from the category Action
insert another command for sound output and select the
desired sound. An example was selected in the figure on
the right.

Expand the program so that all four Touch-Pins can be
checked and four different tones can be output.

2

3

Expand the program so that the name of the note that is
currently being played is displayed on the LED screen.
See the illustration below for an example of a single tone.

Select from the category Action the block “Show image”
and insert it into the gap marked with “do” of the branch.
Select the fields in the 5 x 5 grid with a click so that the
note you are currently playing is displayed.

4

branch

condition
command

The Calliope mini as a mini piano

13

Notes and information

Implementation scenarios in class
When connecting the Touch-Pins, one finger must rest
on the Minus-Pin. To do this, hold the Calliope mini in
your left hand and enclose the Minus-Pin with your
thumb and index finger. Touch Pins 0 to 3 with one
finger of your right hand to start the sound output.

Application reference
Among other things, the topic connects the subject
lesson in a very clear way with the subject of music by
showing the basic functionality of electrical instru-
ments. Keyboards and electric pianos work on the same
basic principle as the program: A tone is emitted when a
button is pressed, meaning that the circuit is closed.

Expansion possibilities
As an expansion of the program, different chords can be
programmed for each pin. When a contact is made, a
short tone sequence is played instead of a single tone.
For example, a C major chord can be played when you
touch Pin 0 and a G major chord when you touch Pin 1.
This is how a song can be accompanied.

General knowledge

14

The Calliope mini as a metronome

The code
This is what the code of the finished program looks like. It is defined step by step below.

The exercise
The Calliope mini offers the possibility of timing the
sequence of a program. The accuracy is in the millisecond
range. This creates a metronome that can be used, for
example, to display different heartbeat frequencies.

The program lets the Calliope mini generate outputs
periodically, for example flashes of light or tones.

Subject matter

Subject teaching
The students learn to use the time measurement in the
Calliope mini to build their own electronic metronome. A
strict time sequence is required for this, which is imple-
mented using the built-in waiting time blocks.

Position in the syllabus

Content-related skills
In the field of Nature and life , the students can describe
selected body parts, for example by comparing the
metronome with their heartbeat.

Process-related skills
In the field of Exploring and understanding the world, the
students can compare, classify and relate experiences to
different contexts (e.g. with regard to sense of time and
time awareness).

Requirements

Programming focus:
 – Control of the program sequence by means of waiting

times
 – Structures: Infinite loop, command
 – NEPO® categories used:

Control and action

Programming difficulty:
 – Beginner level
 – NEPO® Level: Beginner

The Calliope mini as a metronome

15

The clock pulses should be output without interruption:
For this you need an infinite loop.
Select from the category Control the block “Repeat
indefinitely/do” and add it to the “Start” block.

The light flashes are created by the time-controlled turning
on and off of the RGB LED:
To do this, you need an instruction to turn on the RGB
LED.
To do so, select from the category Action the block “Turn
LED on colour” off and insert it into the loop.

The instructions for turning off the RGB-LED can also be
found in the category Action :
Add the block “Turn LED off” to the program.

1

2

3

In order for the turning on and off to be visible, Waiting
times must be determined which determine how long the
RGB LED lights up or is turned off: To do this, select the
“Wait ms” block from the category Control , which stops
the program for the specified number of milliseconds and
then continues it again.
The RGB LED is turned on and turned off again after a
tenth of a second (100 milliseconds). For the rest (900
milliseconds) up to the full second (1000 milliseconds) it is
dark, that means it flashes once per second, which
corresponds to a cycle of 60 beats per minute.
If a faster cycle is required, the turn-off time must be
reduced. The cycle slows down accordingly if the turn-off
time is extended.

Transfer the program code to your Calliope mini by
downloading the program and saving it on the Calliope
mini (calliope.cc/en/lets-start/start-coding).

4

5

Steps to create the metronome program

branch

instruction

General knowledge

16

Notes and information

Expansion possibilities
The tempo of the metronome can be changed by
pressing a button.

1 Each time the Button A is pressed, the metronome
should become 5 (ms) milliseconds faster: The
turn-off time of the RGB-LED is reduced by 5 ms.
Each time you press Button B, however, the
metronome slows down by 5 ms.
For these changes in the clock frequency, the
current value of which is stored in the variable
Waiting time, the waiting time is entered
accordingly.

2 Create variable: Click on the “+”-symbol next to the
“Start” block.

3 To prevent the metronome from flashing too fast or
too slowly, the waiting time is limited to a lower
limit of 300 ms and an upper limit of 1500 ms.

Implementation scenarios in class
The students compare the clock rate of the Calliope mini with
their heart rate by feeling their pulse and at the same time
watching the Calliope mini. By adjusting the turn-off time
(lower waiting time in the program) you try to adapt the clock
generated by the Calliope mini to your pulse.
Areas of application: Metronomes can be used as timing
instruments by controlling counters. Musicians also use these
devices for orientation when making music together or for
studio recordings. Flashing lights to warn vehicles or construc-
tion sites also use metronomes.

The Calliope mini as a stopwatch and countdown counter

17

The Calliope mini as a stopwatch and
countdown counter
The exercise
With this program the Calliope mini can be used as a
stopwatch. To start, the Button A is pressed once. At the
same time as the stopwatch starts, the RGB LED lights up
green. Pressing Button B stops the clock and the time
recorded is displayed in seconds on the LED screen. At the
same time, the colour of the RGB LED changes from green
to red. The pressing of the button can be supported
acoustically by a short tone.

A variant of the stopwatch is the countdown of a period of
time with a countdown counter (alarm clock). The
countdown starts by pressing “A”. For every second an
animation is shown on the LED screen and the RGB LED
lights up green. After a time previously set in the program,
for example one minute, the RGB-LED turns to red, a final
image appears and an alarm tone sounds ten times in a
row.

Subject matter

General knowledge
The students encounter the phenomenon of time in a
variety of ways. They can orientate themselves in manage-
able periods of time, differentiate between time concepts
and time structures and apply them. The Calliope mini is a
time measurement instrument that can be used in many
ways.

Position in the syllabus

Content-related skills
In the field of Time and change, the students can use linear
concepts of time and instruments (clock, ...) as well as
understand time as a finite and infinite phenomenon and
relate experienced and measured time by using the
stopwatch and countdown timer as a timer and for timing
control.

Process-related skills
In the field of Exploring and understanding the world, the
students can understand time as a finite and infinite
phenomenon, relate experienced and measured time to
each other, and compare and organise corresponding
experiences and relate them to different contexts (for
example sense of time and time awareness).

Requirements

Programming focus:
 – Input via buttons, output via LED screen, RGB LED

and loudspeaker
 – Structures: conditional waiting, counting loop
 – calculate with variables
 – Query timer
 – Use functions (countdown counter)
 – NEPO® categories used: Action, Sensors, controls,

logic, mathematics, variables, functions

Programming difficulty:
 – Beginner level
 – NEPO® Level: Beginner/Expert

General knowledge

18

The code for the stopwatch
This is what the code of the finished program looks like. It is defined step by step below.

Steps to create the program for a stopwatch

So that the start time and the end time of the
stopwatch can be saved, two variables must
be created:
To create a new variable, click on the “+” to the
left of “Start”.
A new block appears. Define the names
(startTime, endTime) and the data type
(number) of the variables. Both variables
initially have the value zero.

Two instructions are required for button
control of the stopwatch:
Select the “Wait until” block from the catego-
ry Control and add it twice.
This block already contains the query as to
whether Button A has been pressed.
In the second block, change Button “A” to
button “B”.

1

2

The Calliope mini as a stopwatch and countdown counter

19

Following the button queries, two instructions
for saving the time values are added:
Select the block “Write” from the category
 Variables and insert it under the Wait blocks.

Select the variable startTime in the first block
and the variable endTime in the second.
From the category Sensors dock the block
“get value “timer 1” in ms” to the new blocks.

Now the elapsed time can be calculated in
the variable “write endTime”:
Select the arithmetic block from the catego-
ry Mathematics , change it to subtraction and
insert the variables endTime and startTime.
In the second step, whole seconds are
calculated by dividing by 1000 and rounding off
the thousandths of a second (switch to expert
mode for this block).

The time is displayed on the LED screen:
To do this, select the block “Show text” from the
category Action and replace the text “Hello”
with the variable endTime. To do this, select
from the category Variables the block
endTime.

Additional outputs of the Calliope mini
complement the stopwatch program:
Select the blocks “Turn LED on colour” and
“Play note” from the category Action .
At the end the RGB LED is turned off again.

Transfer the program code to your Calliope mini
by downloading the program and saving it on
the Calliope mini (calliope.cc/en/lets-start/
start-coding).

3

4

5

6

General knowledge

20

The code for the countdown timer:
This is what the code of the finished program looks like. It is defined step by step below.

Steps to create the program for a countdown timer (alarm clock)

First a variable is required for the time span of
the countdown to be saved:

To create a new variable, click on the “+” to the
left of “Start” block. A new block appears.
Define the name (seconds) and the data type
(number) of the variable. The selected start
value “60” indicates the seconds of the
countdown.

To start the countdown while the program is
running, pressing Button A must be registered:
Select the “Wait until” block from the catego-
ry Control and add it to the “Start” block. This
block already contains the query as to whether
Button A has been pressed.

1

2

The Calliope mini as a stopwatch and countdown counter

21

Notes and information

Implementation scenarios in class
 – Time estimates, for example for the duration of

a task being processed
 – Time measurements in experiments
 – Time measurement in competitions
 – Relationship between distance and time

Expansion possibilities
 – The stopwatch can be reprogrammed so that measurements can

be taken in smaller time units. For tenths of a second the divisor is
changed from 1000 to 100.

 – Additional output of tones or light signals for every minute /
second (e.g. for time measurements in games / sports).

The seconds animation programmed within the
function must be repeated 60 times according
to the start value:
Select from the category Control Q Loops the
block “Repeat 10 times” and replace the value
10 with the variable seconds. In this counting
loop insert the previously created block
animation_one_second from the catego-
ry Functions .

When the loop ends, the countdown has
ended. This should be indicated by the
following outputs:
Select from the category Action the block
“Show image” with a suitable representation
and for example further commands for the
RGB-LED or a sound output.

Transfer the program code to your Calliope mini
by downloading the program and saving it on
the Calliope mini (calliope.cc/en/lets-start/
start-coding).

4

5

6

The animation that runs within one second is
programmed outside of the main program in a
function:
Select the “doSomething” block from the
category Functions and place it in a free
window area next to the main program and
change the name to animation_one_second.

Within the function add the action blocks for
displaying the images on the LED screen, as
well as the waiting blocks from the catego-
ry Control as shown on the right.

The total of the waiting time blocks is only 850
milliseconds. The remaining time up to the full
second is consumed by the animation.

3
+ 250ms

+ 250ms

+ 250ms

+ 100ms
= 850ms

loop

English

22

The exercise
In this exercise, the Calliope mini is programmed so that it
can be used as a Morse code device. To display Morse
code, all that is required is the output of a point and a
horizontal line on the LED screen. The Morse code is
audibly supported by additional programming of tones of
different lengths and the self-coded mini Morse code also
works when the sender and recipient cannot see each
other.

Subject matter
English
The students have to deal with foreign scripts and systems
of symbols. They will learn Morse code, discuss how it can
be represented and the advantages of programming Morse
code on the Calliope mini (e.g. simultaneous visual and
auditory output, functionality even in the dark, etc.).

Position in the syllabus

Content-related skills
In the field of Language and use of language, the students
can express themselves on issues in a structured manner,
also using digital communication media, by dealing with
foreign scripts and symbol systems.

Process-related skills
In the field of Speaking and listening the students can use
media as a means of everyday communication.

Requirements

Programming focus:
 – Input via buttons and Touch-Pins, output via LED

screen, loudspeaker and RGB LED
 – Structures: conditional statement, infinite loop,

formulating conditions
 – NEPO® categories used: Action, sensors, control

Programming difficulty:
 – Beginner level
 – NEPO® Level: Beginner

Morse code with the Calliope mini

The code
This is what the code of the finished program looks like. It is defined step by step below.

Morse code with the Calliope mini

23

So that the user can see that the Morse code is in opera-
tion, the RGB-LED is switched on immediately when the
program starts:
Select the block “Turn LED on colour” from the catego-
ry Action and add it to the “Start” block.

An infinite loop is required so that Morse code can be
displayed infinitely:
Select from the category Control the block “repeat
indefinitely/do” and add it.

When the Button A is pressed (if), a Morse point should be
displayed (do):
To establish this condition, you need a branch.
Select the block “if/do” from the category Control and
put it in the loop.

The desired input option (here via the sensor “Button A”) is
selected:
Take from the category Sensors the block “Button A
pressed?” and append it to the branch as a condition
(blue area).

1

2

3

4

Steps to create the program for the output of Morse code

The Morse point is shown on the LED screen:
Select the block “Show image” from the category
 Action and mark the box in the middle of the 5 x 5
grid to display the Morse point.

When Button B is pressed (if), a Morse line should be
displayed on the LED screen (do):
For this condition, you need another branch.
To do this, click on the “+” next to the “if” in the branch.
Select from the category Sensors the block “Button B
pressed?” and insert it as a condition (blue area) in
the new branch.
Select the block “Show image” from the category
 Action and mark three points in the horizontal of the
5 x 5 grid to display the Morse line.

5

6

loop

branch

branch

condition

English

24

In order for the recipient to be able to differentiate
between letters and words clearly, the code needs to be
expanded by further branches:

1 Delimitation letter:
To do this, select the “Pin 2 pressed?” block from the
category Sensors and add it to another branch. Use the
“Show image” block to create a vertical line from the
category Action to separate individual letters.

2 Delimitation word:
Create another branch and add from the category
 Sensors the block “Pin 3 pressed?” With the block “Show
image” from the category Action you create a cross to
delimit individual words.

8

In order for the Morse characters to be legible, they must
be separated from one another. For this purpose, a pause
is inserted after each output and then the screen content
is cleared:
Select the “Wait ms” block from the category Control and
define the length of the pause here (1000 ms = 1 second).
Now delete the screen using the “Clear display” block from
the category Action .

7

Morse code with the Calliope mini

25

Transfer the program code to your Calliope mini by downloading the program and saving it on the Calliope mini (calliope.cc/
en/lets-start/start-coding).

Notes and information

Implementation scenarios in class Expansion possibilities
This code works well for working in pairs. As an extension,
the students can program an automatic Morse word of their
choice.

Background knowledge
The artist and inventor Samuel Morse developed the first
telegraph from 1837, which enabled fast communication
over very long distances. Instead of words, the telegraph
could only send electrical impulses. Fixed combinations of
short and long power surges represent the respective
letters.

Notes that connect subjects
The topic Morse code can be well located in the syllabus of
the subject teaching:
The students can use different types and methods of
communication, describe and reflect on selected inven-
tions, their development and the impact on the living
environment, also with a view to the future.

Supporting sound output:
As an extension of the program, the Morse code can be
supported audibly by a sound output. To do this, select the
block “Play whole note C” from the category Action and
insert it under the block “Show image”. Choose a suitable
pitch and length.

Note: The block “Wait until” is no longer necessary, as the
length of the tone also determines the length of the display
of the Morse code on the LED screen.

Transmit Morse code with the Calliope mini:
The category Messages offers the possibility to let several
Calliope mini microcontrollers communicate with each
other. In this way a Morse code can be sent from Calliope
mini to Calliope mini or to different boards at the same
time.

9

English

26

Generate image impulses and stimulus
words with the Calliope mini
The exercise
The Calliope mini is programmed as an idea generator,
which should automatically generate suggestions for
something to write. For this purpose, one of three or more
images is randomly selected and output at the push of a
button. In addition, the description of the picture appears
as a single word shortly thereafter. The images and words
available in the Calliope mini can be designed or freely
chosen.

Subject matter
English
The students develop ideas for a short story and plan it
based on an image displayed on the 5 x 5 LED screen. At
the same time, the clarity and meaning of pictograms in
different representations can be discussed.

Position in the syllabus

Content-related skills
In the field of dealing with text and other media, the
students can plan and write their own text based on
suggestions by using the image/word presented as a basis
and writing a stimulus word story.

Process-related skills In the field of Writing, the
students can develop, plan and write a writing idea and
pay attention to the logical sequence and, depending on
the reason for writing, write appropriately for the address-
ee and the function.

Requirements

Programming focus:
 – Input via buttons, output via LED screen
 – random selection of an element from a list
 – Structures: Infinite loop, variable, list, random,

branch, Command used NEPO®-categories: Control,
action, list, variables, mathematics, images, sensors

Programming difficulty:
 – Advanced level
 – NEPO® Level: Expert

The code
This is what the code of the finished program looks like. It is defined step by step below.

Generate image impulses and stimulus words with the Calliope mini

27

Steps to create the program for the image impulses and stimulus words

The images and words available should be saved in lists:
First, create a list that includes the images available. To do
this, create a new variable by clicking on the “+” next to
“Start”.
Change the name of the variable in the imageList and
select in the drop-down menu “List Image” as the data
type.

1

The words that are to be displayed for the images must
also be stored in a list:
Create two more variables. Name the second variable
textList. Select “List String” as the data type. Then you can
enter the words that match the images in the green text
blocks, making sure that the words are in the same order
as the images. In the example, the stick figure is in the first
position in the image list and the word “HUMAN” is in the
first position in the text list.

The images and texts should be selected randomly by the
Calliope mini:

Create a third variable that is used to hold the random
number generated. Name this one chance (Names like
“random” are already used in the systemcode and the
editor therefore adds numbers to the variable name).

3

It starts with the images:
Select the images that the Calliope mini should later
display on the LED screen.

You can start with the images provided in NEPO® or create
your own images. The required blocks can be found in the
category Images .

2

English

28

After pressing the Button A, an image and the correspond-
ing text should be displayed:
To do this, an infinite loop is first inserted in the program.

Add a branch to the infinite loop to check whether the
user is pressing the button A.
Select the appropriate blocks from the categories Control
and Sensors .

4

The image to be displayed and the associated text should
be selected at random:
Select from the category Variables the block “Write
chance” and insert it into the branch.
Append the block “random integer value” from the
category Mathematics to it. Change the limits for the

random value to 0 for the lower and to 2 for the upper
limit.
With these commands the Calliope mini generates a
random number (0, 1, 2).
This generated number is written into the variable chance.
This means that the variable chance stores the value that
was written into it.

5

An image is to be displayed that is at the position in the list
that is identified by the value of the variable chance:
The block “Show image” is used to display an image from
the category Action .
Insert it under the branch.

Then select from the category List the block “in list get #”.
It is used to select an element of a list via its number
(Index).
The first image in the list has the number (index) 0, the
second 1 etc.

6

loop

branch

condition

Generate image impulses and stimulus words with the Calliope mini

29

When selecting the list elements, it must be determined
from which list they come:
Insert the variable named imageList from the catego-
ry Variables into the gap after “in list”. Also from the
category Variables , take the

variable chance and insert it into the space after “#”. This
selects the image that is at the position in the list whose
number corresponds to the value of the variable chance.
For example, if the variable has the value “2”, then the
image is selected which is at position “2” in the list (the
third image!).

7

A word that matches the image displayed should also be
output:
Select from the category Action the block “Show text”
and insert it under the block “Show image”. Make a copy of
the list selection. Change the copied line so that Text list is
in the copied block. To do this, click on the word Image list
and select the word Text list in the drop-down menu.
Add the block “from the list” to the “Show text”

block. Note that this will only work if you have selected the
word textList. The new line shows a text from the text list
which is selected by the value of the variable chance.
In order to be able to retrieve the same value here again, it
must first be temporarily stored in the variable. If the
selection value used for the text selection were different,
the text and image would no longer match.
Add a “Wait ms” block between the show blocks so that
the image is visible for two seconds.

8

Transfer the program code to your Calliope mini by downloading the program and saving it on the Calliope mini
(calliope.cc/en/lets-start/start-coding).

Notes and information

Implementation scenarios in class
The students first select images from NEPO ® and give them
the appropriate words. Then they start working in pairs,
swap their circuit boards and begin to write a story based
on their partner’s terms. Due to the random selection, the
order in which the terms appear cannot be foreseen.

In the further course of teaching you can design your own
images and add terms to them.

Expansion possibilities
The program can be expanded in such a way that, in
addition to the images and texts, random colours are also
displayed, which must be included in the story to be
written.

9

English

30

The Calliope mini as a spelling trainer
The exercise
In this exercise the Calliope mini is programmed as a
spelling trainer. If it is turned upside down and then
returned to its original position, a word appears on the
LED screen as a ticker. One letter of this word is replaced
by an underscore. The word is followed by two letters, one
of which is the correct supplementary letter. If the first
letter is correct, the Button A must be pressed; if the
second is correct, the Button B. A tick (correct) or a cross
(incorrect) indicates whether the entry is correct or
incorrect. Entering the correct solution is reinforced by a
higher tone and the green RGB LED lighting up, an
incorrect entry is accompanied by a lower tone and the
red RGB LED lighting up (incorrect). Turning the Calliope
mini upside down and back to the upright position makes
the next word appear.
The words displayed can be changed and added to as
required.

Subject matter
English
The students practice words with the Calliope mini and
check them for their spelling accuracy. During the
programming process, you can put together individual
words that are not yet fully saved and adapt them to the
current state of knowledge.

Position in the syllabus

Content-related skills
The students can write correctly in the field Write texts.
They make use of the regularities of standardised spelling,
check their texts for spelling accuracy and apply spelling
patterns and strategies.

Process-related skills
The students can use spelling strategies in the field of
Writing, they are error-sensitive and have a feel for spelling
and use spelling programs in electronic media as a
proofing aid.

Requirements

Programming focus:
 – Input via buttons, output via LED screen, RGB LED

and loudspeaker
 – Structures: conditional loop, conditional waiting,

branch
 – Formulate conditions
 – work with lists

(Index Q Position of a list element)
 – NEPO® categories used: Action, Sensors, controls,

logic, mathematics, lists, variables

Programming difficulty:
 – Advanced level
 – NEPO® Level: Expert

The Calliope mini as a spelling trainer

31

The code
This is what the code of the finished program looks like. It is defined step by step below.

English

32

A loop (repeated command) is created, where the
processing of each question represents a loop pass:
Select the block “repeat while/do” from the category
 Control Q Loop and add it to the red variable blocks.
This loop should be repeated as long as there are
questions in the list.
The variable counter initially has the value “0” and in the
last loop pass it has the value “2” for three questions. This
is because list indices always start with the index “0”.

For the loops condition you need from the category
 Logic the comparison block “≤”, from the category
 Variables the blocks “counter” and “questions” and from
the category Lists the block “Length of”. From the
category Mathematics , insert the block “change by” into
the loop, in which you enter the numerical value “1”.

2

Steps to create the program for the spelling trainer

condition

loop

Practice words and their correct spelling should be
determined for the spelling trainer:
To create a new Variable , click on the “+” to the left of
“Start”. A new block appears. Another string is also added
by clicking on the “+” in the blue list block.

A total of six variables are created:
 – one with the name counter from the data type

“Number”.
 – two further variables with the names

question and answers of the data type
“List Strings”.

Enter the question words (freely selectable) and the
correct answer (“a” or “b”) in the light green text fields.
Note: The underscore in the question words stands for the
letter to be used.

Finally, you need three variables of the data type
“Boolean” with the names answer_a_correct , button_a_
correct and button_b_correct.
All three receive the truth value
“true” from the category Logic .

1

The Calliope mini as a spelling trainer

33

The player takes control of the spelling trainer using the
following instructions:
Select the “Wait until” block from the category Control
and insert it three times in the loop in front of the “Increase
counter by 1” block.
At the first two “Wait until” blocks you dock the blocks “Get
upside down gesture” and “Get upright gesture” from the
category Sensors .

At the third “Wait until” block, from the category Logic
add the block and . Select

in the drop-down menu “or”. Fill in the two gaps with the
blocks “Button A pressed?” and “Button B pressed?” from
the category Sensors .

Now the Calliope mini is ready for the next question:
To show these randomly, select the block “Show text” from
the category Action and add the block “from the list“
questions ”in list get #“ from the category Lists . You fill the
two gaps with the blocks “questions” and “counters” from
the category Variables , since these are used as a list
index.

3

The next four steps check whether the button you pressed
matches the correct solution:
As preparation, select three “write” blocks from the
category Variables , within which you select the variables
answer_a_correct , button_a_correct and button_a_cor-
rect. To the first “Write” block, add from the category
 Logic the block = , to the other two, the block

and .
1. Is the entry in the “solutions” list equal to “a”?

Add in the first condition the block “in list get #” from
the category Lists . Fill the left gap with the “solu-
tions” block, the right with the “counter” block from
the category Variables . On the right side of the
equal sign insert the letter “a” from the category Text .

2. If the answer “a” is correct, was the button “A” also
pressed?

3. If the answer “a” is incorrect, answer ”b” must be
correct. Is then the “B” button pressed?

Step 2 and 3:
In the two following conditions insert from the catego-
ry Sensors “Button A pressed?” and
“Button B pressed?” on the left side and the Variable
answer_a_correct is inserted twice on the right side. For
the lower condition 3 the variable answer_a_correct is
enclosed by the negation block “not” from the catego-
ry Logic .

4. If the result of one of the previous two questions (step
2 or 3) is true, the player has given a correct answer.

This is followed by a branch from the category
 Control Q Decisions with the block “if/do/else”. Dock the
condition block and from the category Logic to this.
The “and” is changed in the drop-down menu to “or” and
add to the left and right of the “or” the blocks button_a_
correct as well as button_b_correct from the category
 Variables .

4

English

34

There is now output that matches the correct and the
incorrect answer in the form of an image:
If the comparison of the button input matches the correct
answer, you can now use the branch after “do” via the
category Action Q Display and the block “Show image” to
insert a hook for example.
After “else”, if a button that did not match the correct
answer was pressed, an image is added for the LED
screen with an “X” for example.

As additional feedback to the user, the RGB-LED should
light up and a tone should be heard.

Between each question the LED screen must be cleared
and the RGB LED turned off:
At these points you can add from the category
 Action Q Light status the block “Turn LED on colour” and
from Action Q Sound the block
“Play whole note C” for the additional output for the
RGB-LED and the sound output.

Between the questions, i.e. after the block “if/do/else”, the
LED screen is deleted after a waiting period
(Control Q Wait) of two seconds (= 2000 milliseconds)
and the RGB-LED turns off again
(Action Q Display and Action Q Light status).

5

Transfer the program code to your Calliope mini by downloading the program and saving it on the Calliope mini (calliope.cc/
en/lets-start/start-coding).

Notes and information

Implementation scenarios in class
 – Any spelling exercises in which individual letters make

the word difficult to write, for example spelling phenom-
ena such as the hardening of the final sound

 – Finding such words in texts or exercises, for example
from the textbook, and adding these words to the list of
questions in the spelling trainer

Expansion possibilities
 – an extension would be to count the correct answers as a

further variable points
 – likewise, the respective word could be displayed in the

correct spelling after each question. Possibly also in the
plural or in the infinitive, for example, to justify the
correct spelling

 – Similar to the program example “Morse code with the
Calliope mini”, questions and answers can be transmitted
wirelessly between two Calliope mini (Category
 Messages Q Block “Send message”)

6

The Calliope mini as a random generator

35

The Calliope mini as a random generator
The exercise
In the following exercise, the Calliope mini is programmed
to be a random generator (number dice). Pressing a button
will output a random number between 1 and 6. In a further
step, the dice can be programmed in such a way that the
respective number image of the dice is displayed instead
of the figure.

Subject matter
Mathematics
The students program the Calliope mini as a random
generator (hexagonal dice). They can use it to carry out
simple random experiments and assess, describe and
compare the probability of events.

Position in the syllabus

Content-related skills
In the field of data, frequency and probability, the students
can carry out simple random experiments as well as
assess, describe (certain, possible, impossible) and
compare the probability of events in simple random
experiments by using the programmed Calliope mini dice
in a playful and practical way for random experiments.

Process-related skills
In the field of Reasoning, the students can ask questions
and express assumptions as well as look for reasons (also
of regularities).

Requirements

Programming focus:
 – Input via buttons, output via LED screen
 – Structures: conditional command, loop
 – Formulate conditions
 – work with variables (code 2)
 – Compare input values; Logic (code 2)
 – NEPO® categories used: Action, sensors, controls,

logic, mathematics, variables

Programming difficulty:
 – Beginner level
 – NEPO® Level: Expert

The Code 1: Programming a number dice
This is what the code of the finished program looks like. This is defined step by step below.

Mathematics

36

The desired input option (here via the sensor “Button A”)
is selected:
Select the block “Button A pressed?” from the catego-
ry Sensors and add it to the branch as a condition (blue
area).

3

So that an infinite number of random numbers can be
output, an infinite loop is required:
Select the “Repeat indefinitely/do” block from the
category Control Q Loop and add it to the “Start” block.

1

Steps to create the program for a number dice

The random number should be displayed on the LED
screen:
Select the block Action Q Display the block
“Show text” and click in the drop-down menu on
“Character”.

In the last step, the value of the random number must be
specified:
Replace the text “Hello” attached to the block “Show
characters” with the block “random integer from 1 to 100”
from the category Mathematics . Replace the value 100
with the number 6 (hexagonal dice) by clicking on the 100
and entering the number 6 on the keyboard.

4

5

Transfer the program code to your Calliope mini by downloading the program and saving it on the Calliope mini
(calliope.cc/en/lets-start/start-coding).

6

When Button A is pressed (i), a random number should be
output (do):
For this you need a branch. Select the block “if/do” from
the category Control Q Decisions and paste it into the
loop.

2

loop

branch

condition

The Calliope mini as a random generator

37

The code 2: Programming a dice with dots
This is what the code of the finished program looks like. This is defined step by step below.

Steps to create the program for a dice with dots

So that new numbers can be output again and again, a
variable must be created and defined:
To create a new variable, click on the “+” to the left of
“Start”. A new block appears. Define the name (dice) and
data type (here: number) of the variable. To do this, click
on the relevant field.

Unlimited random numbers should be able to be output:
For this you need an infinite loop.
Select the block “repeat indefinitely/do” from the category
 Control Q Decisions and add it to the “Start” block.

1

2

infinite loop

Mathematics

38

When the Button B is pressed, a random number is to be
output:
To establish this condition, you need a branch.
Select the block “if / do” Control Q Decisions and insert it
into the loop.

3

The desired input option (here via the sensor “Button B”) is
selected: Select the block “Button B pressed?” from the
category Sensors and add it to the branch as a condition
(blue area).

4

The value of the variable random number must be defined: Select from the category Variables the block “set dice”.
Place the block “random integer from 1 to 100” from the
category Mathematics and replace the value 100 with the
number 6. To do this, click on 100 and enter the number 6
on the keyboard.

5

A better readability of the random numbers should be
guaranteed:
Delete the screen content by inserting the block “Clear
display” from the category Action Q Display .

Then insert a pause. Select the block “Wait ms” from the
category Control Q Wait and define the length of the
pause (1000 ms = 1 second).

6

branch

condition

The Calliope mini as a random generator

39

The random values must be linked to the dot images of the
dice:

Another branch is needed for this. Select the block “if/do”
from the category Control Q Decisions and append it to
the “Wait ms” block.

7

The random value must be queried so that the corre-
sponding dot image can be displayed on the LED screen:

For this you need a comparison between two numbers.

Select from the category Logic the block = and
add it to the branch as a condition.

8

The random number from the variable dice is now compared
with the number 1:

Select from the category Variables the block “Dice” and
drag the variable into the left gap of the logic block.
Take the block “0” from the category Mathematics and
insert it in the right gap. Replace the 0 here with a 1 by
clicking on the zero and entering it on the keyboard.

9

branch

condition

Mathematics

40

The dot image for number 1 is displayed on the LED
screen:

Select the block “Show image” from the category
 Action Q Display and mark the point in the middle of the
5 x 5 grid by clicking on the field that is required to display
the number 1.

10

The dot image for number 2 should be linked and
displayed on the LED screen:
Now click on the “+” next to the “if” in the branch.

Another branch appears.
Now copy the complete Logic block from step 10 by
clicking with the right mouse button on the block to be
copied and selecting “copy” and append it to the branch.
Change the numeric value to 2 by clicking on the one and
entering it on the keyboard.

11

branch

condition

The Calliope mini as a random generator

41

Notes and information

Implementation scenarios in class
 – Compare your own experience of throwing the

dice (luck, bad luck) and findings from test series
with a large number of dice throws.

 – Make assumptions about random experiments
and their outcome.

 – Create frequency lists working in pairs (first with
one, then with two Calliope mini dices); describe
the results and try to justify them

 – Compare the digital dice with real dice and use it
 – Store further platonic solids (hexagonal or

multi-faceted solids) in the program code and
examine them

Expansion possibilities
The Calliope mini can be programmed into a mini oracle in a similar way.
When you click on the Button A, either a tick or a cross, “yes” or “no”, a sad
or a happy face, etc. appears at random.

The dot image for number 2 is displayed:
Copy the block Action Q Display “Show image”

and mark the corresponding boxes for the display of the
number 2 by clicking the corresponding fields.
Do the same for the remaining four sides of the dice.

12

Mathematics

42

The Calliope mini as a 1 x 1 mental arithmetic
trainer
The exercise
In this exercise, the Calliope mini is programmed to
become a 1 x 1 mental arithmetic trainer. For example, if
you click the Button A, a multiplication problem is
displayed. For example, if Button B is pressed, the result of
this task will appear on the LED screen. Programming can
be done in two steps:

Code 1: Programming of individual multiplication
problems:
In a first step, one or more self-defined multiplication tasks
are programmed, whereby different sensors (e.g. Button A
or B, Touch-Pin pressed, shaking, position upside down
etc.) can be used.

Limits of the code
With code 1, the program does not perform any arithmetic
operations. Instead, the correct result must have been
calculated and stored beforehand. This means that work
with the 1 x 1 mental arithmetic trainer will very soon be
used up and the user quickly notices that a program
expansion is necessary.

Code 2: Programming of the randomly generated 1 x 1
calculator trainer:
In the next step, a programming code must be created in
which the Calliope-mini actively calculates itself. In doing
so, new multiplication tasks should always be given out at
random and the corresponding correct solutions dis-
played.

Subject matter
Mathematics
The students program a 1 x 1 mental arithmetic trainer
that outputs the two factors of a multiplication problem at
random and shows the correct solution at the push of a
button.

Position in the syllabus

Content-related skills
In the field of Numbers and operations , the students can
call up the basic arithmetic tasks from memory by first pro-
gramming a Calliope mini arithmetic trainer and then
practicing the arithmetic tasks as a user.

Process-related skills
In the field of Representation, the students can transfer one
representation into another (in the programming language
of the editor).

Requirements

Programming focus:
 – use different input options
 – Output of text (number) and image
 – Structures: Loop, conditional wait
 – Formulate conditions
 – work with variables (Code 2)
 – NEPO® categories used: Control, action, mathematics,

sensors, variables (only code 2)

Programming difficulty:
 – Medium level
 – NEPO® Level: Beginner (Code 1) – Expert (Code 2)

The Code 1: Programming of individual
multiplication problems

This is what the code of the finished program looks like.
It is defined step by step below.

The Calliope mini as a 1 x 1 mental arithmetic trainer

43

So that the multiplication problem can be displayed
infinitely often on the Calliope mini, an infinite loop is
created at the beginning:
Select the block “repeat indefinitely/do” from the category
 Control and add it to the “Start” block.

1

Steps for creating the program for individual multiplication tasks

When the Button A is pressed (if), the multiplication
problem should be displayed (do):
To establish this condition, you need a branch.
Select from the category Control the block “if/do” and
insert this into the loop.

2

The desired input option (here via the sensor “Button A”) is
selected:
Select the block “Button A pressed?” from the category
 Sensors and add it as a condition (blue area) to the
branch.

3

The 1st factor of the multiplication problem should be
displayed on the LED screen :
Select the block “Show text” from the category Action
and insert it into the branch. Replace the text “Hello” with
the block “0” from the category Mathematics . Add any
number between 0 and 10 (Q factor 1) by clicking on the
zero and entering it on the keyboard.

4

The multiplication sign should be displayed:
Select the block “Show image” from the category Action
and mark the box in the middle. This point appears on the
LED screen as a multiplication sign.

Then enter a second number (Q factor 2). Proceed as in
step 4.

5

loop

branch

condition

Mathematics

44

When button B is pressed (if), the result of the multiplica-
tion problem should be displayed on the LED screen (do):
Another branch is needed for this.
In the first branch click on the “+” next to the “if”.

First select the block “Button B pressed?” from the
category Sensors and add it as a condition to the branch.
Then add the “Show text” block from the category Action .
Replace the text “Hello” with the block “0” from the
category Mathematics . Enter the correct result of the
multiplication problem you have saved here.

6

When running the task, the multiplication sign is difficult
to see. Adding pauses and clearing the LED screen
increases readability:
Select the block “Wait ms” from the category Control and
specify the length of the pause here.

To clear the screen content, select the “Clear display”
block from the category Action .

Insert another pause and test which pause length
guarantees good readability. (1000 ms = 1 second)

7

Expand the program so that several tasks can be practiced:
Create further branches and select new conditions
(Sensors), e.g. :

 Sensors Q “Pin 1 pressed?”

 Sensors Q “upright position active?”

Proceed as described in steps 2–8.

Transfer the program code to your Calliope mini by
downloading the program and saving it on the Calliope
mini (calliope.cc/en/lets-start/start-coding).

8

9

branch

The Calliope mini as a 1 x 1 mental arithmetic trainer

45

Code 2: Programming of the randomly generated 1 x 1 mental arithmetic trainer
This is what the code of the finished program looks like. It is defined step by step below.

Steps to create the program for a randomly generated 1 x 1 mental arithmetic trainer

So that new tasks can be output again and again, two
variables must first be created and defined:
You need variables for the two factors (factor1 and factor2).
To create a new variable, click on the “+” to the left of
“Start”. A new block appears. Define the name (factor1 /
factor2) and data type (here: number) of the variable.

When the Button A is pressed (if), a multiplication problem
generated by random should be displayed (do):
As described in Code 1, a loop and a branch are also
required here:
Proceed as described in Code 1 (steps 1–3).

1

2

branch condition
loop

Mathematics

46

The value of the variable must
be specified:
Select the block “Write factor1”
from the category Variables
and insert it into the branch.
Place the block “random integer
from 1 to 100” from the
category Mathematics and
replace the value 100 with the
number 10. Do the same with
factor2.

3

The 1st factor (factor1) should be
displayed on the LED screen:
Select the block “Show text”
from the category
 Action Q Display and replace
the text “Hello” with the first
 variable . Select from the
category Variables the block
factor1.

4

The multiplication sign should
be displayed on the LED screen:
Select the block “Show image”
from the category
 Action Q Display and mark the
box in the middle.

The 2nd factor (factor2) should
be displayed on the LED screen:
Proceed as in step 4. Select from
the category Variables the
block “factor2”.

5

The Calliope mini as a 1 x 1 mental arithmetic trainer

47

When Button B is pressed (if), the
correct result of the randomly
generated task should be
displayed (do):
In the branch, click on the “+”
next to the “if”. Another branch
appears. Select the block
“Button B pressed?” from the
category Sensors and add it as
a condition to the branch.

The program needs the
command that the product of
the randomly generated factors
is displayed on the LED screen:

Select “Show text” from the
category Action Q Display and
from the category Mathematics
add the block = .

Now the two variables (here:
factors) have to be inserted:
Select from the category
 Variables the blocks factor1
and factor2 . Click on the “+” sign
and select the multiplication
sign “×” from the selection
menu.

6

As in Code 1, the multiplication
problem is not easy to read at
first. Insert pauses at the
appropriate places and/or clear
the LED screen:

 Control Q Wait
Q “Wait ms”

 Action Q Display
Q “Clear screen”.

7

Mathematics

48

Transfer the program code to your Calliope mini by downloading the program and saving it on the Calliope mini
(calliope.cc/en/lets-start/start-coding).

Notes and information

Implementation scenarios in class
 – This code works well for working in pairs. The students

can question each other or practice at home and on the
go with their self-programmed mental arithmetic trainer.

 – Note on handling: If you have selected the Touch-Pins as
sensors, proceed as follows when executing with the
Calliope mini: Hold the minus pin with one hand and
touch the relevant pin with a finger of the other hand.

Expansion possibilities
 – Programming further arithmetic operations:

A modification of the addition trainer program is ideal for
use in primary schools. Subtraction and division are a bit
more complicated, since, among other things, the result
may have to be displayed as a minus or decimal number.

 – Send arithmetic problems:
The category Messages offers the possibility to let
several Calliope mini microcontrollers communicate with
each other. Calculation tasks can be sent from Calliope
mini to Calliope mini or to different boards at the same
time.

8

Determine neighbouring numbers with the Calliope mini

49

Determine neighbouring numbers with the
Calliope mini
The exercise
The Calliope mini is programmed to be a computer which,
when requested, outputs a random number and displays
the two neighbouring numbers (predecessor and
successor) by pressing a button.

Subject matter
Mathematics
The students consider which arithmetic rule should be
used to determine neighbouring numbers and how this
task can be implemented using programming. With the
self-programmed computer you can finally practice the
determination of the predecessor and successor of
random numbers controlling yourself.

Position in the syllabus

Content-related skills
In the field of Numbers and operations, the students can
recognise, describe and represent number properties and
number relationships as well as recognise, describe and
continue laws in arithmetic patterns by correctly program-
ming a Calliope mini neighbouring number trainer.

Process-related skills
In the field of Reasoning, the students can recognise and
describe mathematical relationships and justify their own
ways of thinking and finding solutions.

Requirements

Programming focus:
 – Input via Touch-Pins and buttons, output via LED screen
 – Structures: conditional statement, infinite loop, branch
 – work with variables
 – NEPO® categories used: Action, sensors, controls, logic, mathematics, variables

Programming difficulty:
 – Medium level
 – NEPO® Level: Expert

The code
This is what the code of the finished program looks like. This is defined step by step below.

Mathematics

50

Steps to create the program for the output of neighbouring numbers

So that new numbers can be output again and again
randomly when practicing with the neighbouring number
trainer, various variables must first be created and defined:
To create a new variable, click on the “+” to the left of
“Start”. A new block appears. Define the name (e.g.
randomNumber, predecessor, successor) on the left and the
data type (number) of the variable on the right.

Unlimited random numbers should be able to be output:
For this you need an infinite loop. Select the block “repeat
indefinitely/do” from the category Control Q Loops and
add it to the “Start” block.

1

2

 When Pin 2 is pressed (if), a random number should be
output (do):
To establish this condition, you need a branch. Select the
block “if/do” from the category Control Q Decisions and
insert it into the loop.

3

The desired input option (here via the sensor “Pin 2”) is
selected:
Select the “Pin 2 pressed?” block from the category
 Sensors and add it to the branch as a condition (blue
area).

4

loop

branch

condition

Determine neighbouring numbers with the Calliope mini

51

 The value of the variable randomNumber must be defined: Select from the category Variables the block “Write
randomNumber” and insert it into the branch. Then from
the category Mathematics place the block “random
integer from 1 to 100” and replace the value 100 with the
number 999.

5

The random number should be displayed on the LED
screen:

To do this, select the block “Show text” from the catego-
ry Action Q Display and replace the text “Hello” with the
variable. To do this, select from the category Variables
the block “randomNumber”.

6

The predecessor of the output random number should be
determined:
Another branch is needed for this.
In the branch, click on the “+” next to the “if”.

The desired input option (here via the sensor “Button A”) is
selected:
Select the block “Button A pressed?” from the category
 Sensors and add it as a condition to the branch.

7

branch
condition

Mathematics

52

The value of the variable predecessor must be defined
(randomNumber - 1 = predecessor):
Select the block “write predecessors” from the catego-
ry Variables and place the block + from the
category Mathematics on it.
Select from the category Variables the block
“randomNumber” and drag the variable into the left gap of
the mathematics block.

Select the block “0” from the category Mathematics and
insert it in the right gap. Replace the zero here with a 1.
Click on the “=” sign and select the subtraction sign “-”
from the drop-down menu.
The predecessor should be displayed on the LED screen:
To do this, select the block “Show text” from the catego-
ry Action Q Display and replace the text “Hello” with the
variable. To do this, select from the category Variables
the block “predecessor”.

8

The successor of the output random number should be
determined and displayed on the LED screen
(randomNumber + 1 = successor):

Proceed as in step 8. Just replace the variables (predeces-
sor with successor) and select the addition symbol instead
of the subtraction symbol in the selection menu.

9

Transfer the program code to your Calliope mini by downloading the program and saving it on the Calliope mini
(calliope.cc/en/lets-start/start-coding).

Notes and information

Implementation scenarios in class
In addition to practicing with controlling themselves, the
students can also question each other in pairs.

Expansion possibilities
 – Insert further summands and minuends (e.g. + 3, - 3, + 10,

etc.).
 – Doubling and halving (× 2, ÷ 2)

12

The Calliope mini and the Nim game

53

The Calliope mini and the Nim game
The exercise
In this programming example, the Calliope mini is to
implement a simple mathematical game, the Nim game. In
the Nim game, one, two or three elements are alternately
removed from an initial set (in the original game, sticks,
stones or pieces). The player who takes the last element
wins. The game is programmed for two players, with the
Calliope mini taking over the role of the second player. The
second player (i.e. the Calliope mini) does not act tactically,
but takes away a random number (one, two or three) of
elements. The remaining number of elements is displayed
on the LED screen after each turn. When an input from the
first player is expected, the RGB-LED lights up yellow, if it is
the Calliope mini’s turn, the RGB-LED lights up blue. The
number of elements to be removed is determined by the
first player by repeatedly pressing Button A. Pressing
Button B concludes a move.
If the Calliope mini has won and the human player has lost,
a sad smiley is displayed. However, if the human player
wins, a smiling smiley appears on the LED screen.

Subject matter
Mathematics
With the Nim game, the students quickly notice that it is
not a game of chance. By carefully observing, describing
and justifying the various game process, you can individu-
ally develop your winning strategy. In this way, the Nim
game contributes to a basic mathematical understanding.

Position in the syllabus

Content-related skills
In the field of Numbers and Operations, the students can
solve puzzles by trying (e.g. disordered and systematic
trying) by playing the Nim game with the Calliope mini
tactically skilfully.

Process-related skills
In the field of Problem solving, the students can develop
solution strategies, use solution strategies (e.g. systematic
experimentation) and recognise and use dependencies.

Requirements

Programming focus:
 – Input via buttons, output via LED screen and

RGB-LED
 – Structures: conditional loops, infinite loops, branches

and conditions
 – deal with logical variables
 – Functions (Count button presses)
 – NEPO® categories used: Action, Sensors, controls,

logic, mathematics, variables, functions

Programming difficulty:
 – Advanced level
 – NEPO® Level: Expert

Mathematics

54

The code
This is what the code of the finished program looks like. It is defined step by step below.

main program

function

function request

The Calliope mini and the Nim game

55

Steps to create the program for the Nim game

For the game process, the initial amount of sticks (a),
the sticks taken away by the human player (b), the
sticks taken from the program (c) and the current
player (d) must each be saved in a variable:
For this purpose, four variables are created, three of
which are of the data type “number” with the names
(a) “number_sticks”. Click on the “0” in the blue field

and enter the value “12”.
(b) “nim_human”
(c) “nim_Calliope”
(d) You also need a variable “player_human ” (d) of

the data type “logical value”. This can assume the
two values true (it is the human’s turn) or false (it
is the Calliope mini’s turn).

Since it is not so easy to count how often the human
player has pressed the button A in a row this task is
outsourced to a function. This keeps the main
program clearer:
From the category Functions insert the block
“doSomething ... return number” next to the main
program on the free space and name this function
count_button_presses (input via the keyboard).
This creates a new block with the name you just
entered in the category Functions .
Add the block “repeat while/do” to this function from
the category Control Q Loops .
The condition of the loop is defined from the
categories Logic with the block “not” and Sensors
with the block “Button B pressed?”.

In this loop insert a branch. To do this, select from the
category Control Q Decisions the block “if/do” to
which you dock the block “Button A pressed?” from
the category Sensors as a condition.
The block change by is now inserted from the
 Mathematics category. The placeholders are filled
with the block “nim_human” from the category
 Variables and the numerical value “1” from the
category Mathematics . The button presses are thus
counted.
From the category Control Q Wait add the “Wait ms
(400)” block.
This is used to prevent a long button press from
counting as a double button press.
The function returns the value of the variable
nim_human to the main program.

1

2

3

function

function

loop

condition

condition

branch
loop

Mathematics

56

So that no more than three button presses are evaluated, a
second branch from the category Control Q Decisions
with the block “if/do” is inserted.
The condition consists of the equality block from the
category Logic . The variable nim_human and the
number “3” from the category Mathematics are used.
If this condition is fulfilled, the loop “repeat while Button B
is not pressed?” is ended by the block “break out the loop”
from the category Control Q Loops and the function is
also exited.

4

In the main program, the human player and the Calliope
mini alternate. Therefore, the commands for the respective
moves must follow one another:
The “Write” block is used seven times from the Variables
category.
The variable nim_human must be reset to the value “0”
before each move - a new move is due.
The variable player_human gets the value “true” from the
category Logic – It is the human player’s turn and the
 variable nim_human gets the value of the function from
the category Function count_button presses – no more
than three sticks may be removed.

After the move is completed, the number of sticks is
reduced accordingly by subtracting from the catego-
ry Mathematics .
Do the same for the Calliope mini’s turn. The only differ-
ence is not to reset the variable nim_Calliope to “0”, since it
is overwritten every time by the block “random integer
from 1 to 3” from the category Mathematics .
At three points in the course of the game (at the beginning
and after each move by one of the two players) the value
of the variable number_sticks should appear as text on the
LED screen. To do this, select the “Show text” block from
the category Action Q Display and insert it as shown
below.

5

function

condition
loop

loop

Calliope mini’s turn

player’s turn

The Calliope mini and the Nim game

57

The Calliope mini should determine and display who has
won:
If the number of sticks equals zero, the player whose turn it
is wins. The infinite loop is cancelled in this case.
After the human’s move or the Calliope mini’s move insert
the block “if/do” from the category Control Q Decisions .
Insert the condition from the category Logic “≤” and
compare the variable number_sticks with the numerical
value “0” from the category Mathematics . You can find
the block “break out loop” in the category
 Control Q Loops .
It is helpful to assign a colour of the RGB LED to each of the
players, which always lights up while it is their turn. To do

this, you need a block for turning on and off from the
category Action Q Light status . As the Calliope mini
calculates very quickly, you incorporate an artificial delay
of one second (= 1000 milliseconds) from the category
 Action Q Wait for each player. The number “1000” can be
found in the category Mathematics in the block “0” and
change the value to “1000”.

6

loop

condition

branch

signal “player-human” on move

signal “player-Calliope mini” on move

Calliope mini’s turn

player’s turn

check “win player-human”

check “win player-Calliope mini”

Mathematics

58

At the end of the game, various symbols are displayed on
the LED screen to show which player has won:
To do this, a branch from the category
 Control Q Decisions with the block “if/do/else” is
required, which checks the value of the variables
player_human after the end of the game loop. If this value
is true, the human player has won.
This is displayed by means of the image of a laughing
smiley from the category Action Q Display and the
corresponding selection via the drop-down menu. Use a
sad smiley in the event that it was the Calliope mini’s turn
at the end of the game, i.e. the variable player_human
has the value “false”.

7

Transfer the program code to your Calliope mini by downloading the program and saving it on the Calliope mini
(calliope.cc/en/lets-start/start-coding).

Notes and information

Implementation scenarios in class
 – Finding winning strategies, for example the number of

sticks to be taken in moves, that enable a win.
 – Address the difference between chance (luck) and

strategy.
 – Questions for discussion: Is a computer intelligent? If it is

not, why can it still slip into the role of a player?
 – Compare the meaning of the rules of the game in

different contexts (e.g. sports, board games).

Expansion possibilities
 – Changing the rules of the game, for example only one or

two sticks may be removed. Investigate what changes in
the program or in the game strategy.

 – Change of the number of sticks at the beginning of the
game.

 – The player simulated by the Calliope mini can be made
more intelligent, for example by trying further branches
to avoid certain numbers of sticks or to reach others.

8

branch

Glossary

59

Glossary
Instruction The blocks in the NEPO® editor that have a triangular notch at the top left and a triangular extension at

the bottom left are instruction or command blocks.
The term “instruction” is synonymous.
Programs are made up of instruction sequences (sequences) and control structures (e.g. loops,
branches).

Output All actions of the Calliope mini that can be heard or seen are understood as output. As output, sounds
can be generated with the loudspeaker, images or texts can be displayed on the LED screen or the RGB
LED can light up in a colour.
Invisible outputs of the Calliope mini are radio communications, motor control signals or electrical volt-
ages at the pins.

Drop-down menu Some program blocks have a drop-down menu, for example in Sensors Q “Button A pressed?”. There,
after selecting the block, you can also select the Button B by clicking on the selection area. The current
selection is indicated by a tick.

Condition A comparison block from the category Logic is required to define a condition. Variables or constant
values (e.g. a number, a text) must be inserted to the left and right of the comparison operator. The two
compared values must be of the same data type. The result of a condition is a truth value (true or false).
Conditions can be combined as desired using Logic Q “and/or” or negated using Logic Q “not”.

Command see instructions

Block A block is a graphic program element of the NEPO® editor. These blocks can be found in the categories.
For example, they are selected and put together with the mouse.

Code A program in the NEPO® editor consists of at least one main program (beginning with “Start”) and any
number of functions. The word “code” can be understood as the English language short form of the
term “programming code” also known as “program”. Coding here means that each programming
language has its own hard-coded commands.
A program has two display forms in the NEPO® editor: (1) The editable coloured program blocks and (2)
the non-changeable source code (visible via the symbol at the top right in the editor window “<>”). This
corresponds exactly to the program blocks.

Data type This is the range of values that a variable can have. There are defined operations for each data type,
such as the arithmetic operations for the data type number.
Examples of elementary data types are: integers, letters, logical values.
Examples of compound data types are: Strings, lists.

Editor There are three editors for the Calliope mini (Calliope mini Editor, PXT, NEPO® in the Open Roberta Lab®).
A program for the Calliope mini can be created or changed with the help of an editor. The program can
either be created using graphic program blocks or be text-based.

Input Input is everything that can be processed by the sensors and buttons of the Calliope mini in a program.

Function If a sequence of instructions is required frequently, it makes sense to outsource it to a function. This
function is given a clearly defined name and can be called up under this name as often as required in
the main program. A new program block is created. A function can contain a return value and parame-
ters.

Index The index denotes the position of a list element within a list. The first element receives the index zero,
for each additional element the index is incremented by one. For example, if the indices range from 0
to 3, the list contains 4 elements.

Category The instructions, control structures, conditions, functions and variables are grouped into content
categories in the NEPO® editor. The different categories are shown in different colours. The correspond-
ing blocks are each the same colour.

Glossary

60

LED screen The 25 red light-emitting diodes on the front of the Calliope mini, which are arranged in a square in five
rows and five columns, are called the LED screen. Simple pictures as well as letters and numbers as
well as text can be displayed on it as a still image (Category Action Q Display).

List If several variables of the same data type and meaning are used in a program, we recommend the
sequential data type list, which has any number of containers of a data type to be specified (number,
logical value, string). In the NEPO® editor, three list elements are initially displayed. By clicking on the
“+” or “-” symbols, their number can be increased or decreased.
There are special functions for lists, such as searching for a list item.

Pauses As the Calliope mini, like any computer, can calculate and execute commands much faster than a
human, it sometimes makes sense to stop it for a certain period of time in order to visualise the
intermediate status of the program. For this purpose, appropriate blocks can be selected in the NEPO®
editor in the category Control Q Wait .

Pin Pins refer to the six corners of the Calliope mini. The two upper corners (“+” and “-”) allow the connec-
tion of a voltage source (battery), the four lower corners (“P0” to “P3”) are touch-sensitive (Touch-Pins)
(see example “Mini piano”). External sensors can also be connected to P0 to P3.

Program see Code

RGB-LED An RGB LED is a light emitting diode (LED) that can light up in several colours.
At its core there are three light-emitting diodes whose colour components (R-red, G-green, B-blue) are
mixed additively. The colour white is created by the simultaneous lighting of all three colour compo-
nents (Category Action Q Light status).

Loop A loop allows a sequence of statements to be executed repeatedly. The loop condition must be
(infinite/ true) for the statement sequence to be executed. If it is not fulfilled, the
conditional/ program sequence is continued after the loop.
counting) An infinite loop has no condition, but instead the constant logical value “true”.
 A counting loop contains, instead of a condition, a counting rule that specifies how often the loop is
 runthrough.

Sensor The Calliope mini has various electronic sensors that can determine the properties of the environment
(category Sensors).
The orientation in the earth's magnetic field (compass sensor), the temperature, the brightness, the
position of the Calliope mini in the room, noises (microphone), the touch of the four pins as well as the
buttons A and B can be determined.

Simulation If there is no Calliope mini at hand, a program written in the NEPO® editor can be simulated by clicking
on the “SIM” button at the top right of the window. A window with a Calliope mini opens and the
program can be started using a “Play” button at the bottom of the window.

Position see Index

Button In contrast to a switch, a button jumps back to its original position when it is pressed. A button
therefore has exactly two states: pressed and not pressed. The Calliope mini has buttons A (blue) and B
(red), which can be queried in programs, as well as the reset button (white).

Touch-Pin see Pin

Variable A variable is a container for a certain value that is defined at the beginning (click on “+” in the start
block) and can later be changed as often as you like. The value is changed via an assignment in the
program. The value of a variable is saved for the duration of the program execution.
Each variable needs a unique name that must begin with a letter. The values of a variable belong to a
data type to be specified in the variable setting (number, string, logical value, etc.).

Comparison A comparison is usually part of a condition. The current values of two variables can be compared with
one another. In addition to equality, there are the comparison operators “not equal to”, “greater than”,
“less than”, “greater than or equal to” and “less than or equal to”.

Glossary

61

Branch Depending on the truth value of a condition (true or false), the linear sequence of a program is
branched into two different program sections (Category Control Q Decisions). The program sequence
changes depending on which truth value is determined by the Calliope mini. Any number of instruc-
tions or other control structures can be used in each of the two branches. After a branch, the program
continues linearly.

Truth value see Condition and Branch

Wait see Pauses

String A string is a sequence of letters, punctuation marks or special characters. In the NEPO® editor, it is also
referred to as text and placed in quotation marks. Variables can, among other things, belong to the
data type “string”.

Timer The processor starts a timer at the same time as the program transferred to it, which works like a
stopwatch with an accuracy of milliseconds (thousandths of a second). The current status of this timer
can be queried any number of times using the block “get value ms timer 1” in the category Sensors . It
is also possible to start this timer again with the “reset ms timer 1” block.

Random A random numerical value can be generated by the Calliope mini processor. A range of numbers within
which the random number lies can be defined by the programmer.

Learning map

This learning map includes all the important
skills that are required to use the computer and
an editor independently and to program the
Calliope mini. It was developed on the basis of
diverse practical experience. As the official
guidelines and syllabus do not (yet) provide a
binding syllabus for coding, the learning map
cannot claim that the learners have fully
mastered all skills at the end of a series of
lessons. Rather, it should be used in the form of
an overview and step-by-step guide as a
didactic guideline for a larger coding lesson
project.

handle the general functions of
the editor

describe the functions of the

blocks

reprogram the given program-

ming examples

change the given program
m

ing

exam
ples

Think about and w
rite your

ow
n program

s

plan and describe a code

(create coding diagram
s)

w
rite a code

•
Instructions

•
Loops

•
Conditions

•
Branches

•
Variables / lists

m
ak

e
th

e
co

m
pu

te
r

op
er

at
io

na
l

ca
ll u

p th
e C

all
io

pe w
eb

sit
ecall u

p an edito
r

save the self-written program

on the computer and open it

again in the editor

transfer the self-written program
to the Calliope mini

62

co
de

 w
ith

 an edito
r

use th
e co

m
put

er

co
ding (p

rogramming)
 use the Calliope mini

 deal w
ith errors

63

Connect external com-

ponents

The learning map is divided into the three
elementary main areas using the computer, code
and using the Calliope mini and is supplemented
by the two areas dealing with errors and connect-
ing external components. Within the main areas,
the linear increase in competence becomes clear,
readable from bottom to top. The competence
connecting external components offers many
possibilities to use the Calliope mini in practice,
but is not detailed because it has not yet been
specified in this textbook. The arrangement of the
learning map as a pie chart makes it clear that the
acquisition of skills is not only structured linearly,
but is also based on a lively alternation of the
individual skills.

Pr
ac

tic
al

ly
 u

se
 p

ro
gr

am
s w

ith
 th

e
Ca

lli
op

e
m

in
i

•
in

 le
ss

on
s

•
in

 e
ve

ry
da

y
lif

e

Run se
lf-

writ
te

n pro
gr

am
s

describe the Calliope mini:

• its role in the computer world

• its components, functions,

connections

Eliminate causes of errors and

faults

Recognise causes of errors

and faults

co
de

 w
ith

 an edito
r

use th
e co

m
put

er

co
ding (p

rogramming)
 use the Calliope mini

 deal w
ith errors

Epilogue

In the present teacher material you are addressed as a
teacher without showing you options for transferring the
presented material into the classroom. We have compiled
experiences and recommendations from feedback from
teachers who have already started coding in class:

 – Familiarise yourself with the structure and the
possibilities of NEPO® and the Calliope mini.

 – Try out the coding examples yourself.
 – Use the free internet access to the editor for this. You

can also practise programming with NEPO® without
the Calliope mini and simulate your code.

 – Get used to storing the codes on your computer in
order to archive your codes and practice transferring
the code to the Calliope mini.

 – Vary existing codes according to your own creative
ideas.

 – Write your own (small) programs.
 – Look for colleagues in the college and become

creative together.
 – Trying it out yourself not only serves to develop your

creativity, but also to develop confidence if your
students have questions and mistakes in class.

We hope that this spark has got across to you and that you
want to try coding in your class. An indispensable
requirement is the provision of the necessary digital
devices for programming.

In the following, teachers describe their first steps and
conditions for coding to be successful in everyday school
life in primary school:

 – two students per device (e.g. laptop, PC) for coding
 – a Calliope mini for each student
 – Entry with a smaller number of students, for example

as part of an afternoon group with 10–12 children on
5–6 computers. An adult helper at the beginning of
the coding course would be ideal to overcome the
entry hurdles for the children (e.g. lack of basic
computer knowledge, making mistakes, lack of
routine in handling the blocks, ...).

 – Encourage your students, in consultation with their
parents, to use the free Internet access to the editor
from home. The children can also practice program-
ming without the Calliope mini. The NEPO® editor
offers a good simulation of the written programs.

Your feedback is important to us!

Have you tried the examples at home or maybe even
with your class? Share your experiences, ideas and tips
with us. In this way you help to develop the materials in
an optimum way with regard to the requirements in the
classroom. We look forward to receiving your feedback!
Write to us at calliope@cornelsen.de

Reference to student material

 – Can be used from grade 3 onwards for the subjects
English, general knowledge and mathematics

 – based on the examples in the present teacher
material

64

Co
rn

el
se

n/
Si

by
lle

 B
ai

er

The Open Roberta Lab is a freely available programming platform on which children, young people and adults can learn to
program even without any previous knowledge. Schoolchildren intuitively bring the Calliope mini to life with the graphic
programming language NEPO®. Open Roberta® is a technological advancement of the Fraunhofer initiative “Roberta® - Learn-
ing with Robots”, which has been promoting digital education in Germany since 2002. The Open Roberta project was initiated
by Fraunhofer IAIS in cooperation with Google. Roberta, Open Roberta and NEPO are registered trademarks of the Fraunhofer
Society for Applied Research e. V.

Click here for the Open Roberta Lab: lab.open-roberta.org

Calliope mini is a product of Calliope gGmbH
With the microcontroller Calliope mini every schoolchild in Germany from the 3rd
grade onwards should be able to have playful access to the digital world. It is only if we
have digital knowledge that we can all actively participate in society and help shape it.

For this purpose, experts from the IT and education sectors work together in an
interdisciplinary manner as part of the Calliope team.

Find more information about the initiative at calliope.cc

Terms of use
This document is under the following Creative Commons
license: https://creativecommons.org/licenses/by-sa/4.0/
deed.en - You are allowed to reproduce, distribute and
make publicly available the work or the content as well as
modifications and adaptations of the work as long as you
state the name of the author / rights holder in the manner
specified by him and only pass on the newly created works
or content under the use of license terms that are
identical, comparable or compatible with those of this
license agreement.
By using this document you accept the terms of use.

Terms of use
This document is published under following Creative
Commons-License: https://creativecommons.org/
licenses/by-sa/4.0/deed.en – You may copy, distribute and
transmit, adapt or exhibit the work or its contents in public
and alter, transform, or change this work as long as you
attribute the work in the manner specified by the author or
licensor. New resulting works or contents must be
distributed pursuant to this license or an identical or
comparable license. By using this particular document,
you accept the above-stated conditions of use.

Jonathas Mello CC-BY 3.0 Unported

CALLIOPE.CC

Coding with the
Calliope mini

The teacher materials for coding with the Calliope mini -
Programming in primary school, directed towards
teachers from grade 3.

· 11 coding examples with content from the syllabus of the subjects
 general knowledge, German and mathematics in grades 3 and 4.

· As a coding novice, you will program your first own programs step
 by step.

· You systematically build your coding skills using the content
 examples.

· Experience the Calliope mini as a fascinating tool for your school
 lessons.

Try it out and see for yourself how amazing
 and easy coding is!

